Design and synthesis of novel derivatives of bisepoxylignans as potent anti-inflammatory agents involves the modulation of the M1/M2 microglia phenotype via TLR4/NF-κB signaling pathway
Bisepoxylignans have been reported to possess a variety of biological functions, especially in anti-inflammatory aspects. However, the bis-tetrahydrofuran scaffold restricts the type and position of substituents, which further limits the further optimization of their biological activity and druggabi...
Gespeichert in:
Veröffentlicht in: | European journal of medicinal chemistry 2025-01, Vol.282, p.117092, Article 117092 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bisepoxylignans have been reported to possess a variety of biological functions, especially in anti-inflammatory aspects. However, the bis-tetrahydrofuran scaffold restricts the type and position of substituents, which further limits the further optimization of their biological activity and druggability. Here, a series of novel derivative s of bisepoxylignans bearing 7H-pyrrolo[2,3-d]pyrimidin-4-amine and 1H-pyrazolo[3,4-d]pyrimidin-4-amine scaffolds were designed and synthesized by a scaffold hopping strategy. Biological evaluation demonstrated that compound 7x exhibited the most potent anti-inflammatory activity, both in vitro and in vivo. Additionally, 7x displayed an excellent oral safety profile at a dose of 500 mg/kg. The anti-inflammatory effect of 7x is potentially mediated by the inhibition of the TLR4/NF-κB pathway and the promotion of M1 to M2 microglial phenotypic conversion. Taken together, 7x could be a promising lead compound for the development of novel therapeutic agents for the treatment of inflammatory diseases.
[Display omitted]
•A series of novel derivatives of syringaresinol with different scaffolds and pharmacophores were designed and synthesized.•Most derivatives showed significant anti-inflammatory activity. Of these, 7x demonstrated optimal anti-inflammatory activity.•7x has moderate blood-brain barrier permeability and a favorable oral safety profile.•7x possesses significant anti-neuroinflammatory properties via TLR4/NF-κB signaling pathway in vitro and in vivo.•7x exhibits anti-inflammatory activity by promoting the transition from M1-like microglia to M2-like microglia in vivo. |
---|---|
ISSN: | 0223-5234 1768-3254 1768-3254 |
DOI: | 10.1016/j.ejmech.2024.117092 |