Retinal structure guidance-and-adaption network for early Parkinson’s disease recognition based on OCT images
Parkinson’s disease (PD) is a leading neurodegenerative disease globally. Precise and objective PD diagnosis is significant for early intervention and treatment. Recent studies have shown significant correlations between retinal structure information and PD based on optical coherence tomography (OCT...
Gespeichert in:
Veröffentlicht in: | Computerized medical imaging and graphics 2024-12, Vol.118, p.102463, Article 102463 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parkinson’s disease (PD) is a leading neurodegenerative disease globally. Precise and objective PD diagnosis is significant for early intervention and treatment. Recent studies have shown significant correlations between retinal structure information and PD based on optical coherence tomography (OCT) images, providing another potential means for early PD recognition. However, how to exploit the retinal structure information (e.g., thickness and mean intensity) from different retinal layers to improve PD recognition performance has not been studied before. Motivated by the above observations, we first propose a structural prior knowledge extraction (SPKE) module to obtain the retinal structure feature maps; then, we develop a structure-guided-and-adaption attention (SGDA) module to fully leverage the potential of different retinal layers based on the extracted retinal structure feature maps. By embedding SPKE and SGDA modules at the low stage of deep neural networks (DNNs), a retinal structure-guided-and-adaption network (RSGA-Net) is constructed for early PD recognition based on OCT images. The extensive experiments on a clinical OCT-PD dataset demonstrate the superiority of RSGA-Net over state-of-the-art methods. Additionally, we provide a visual analysis to explain how retinal structure information affects the decision-making process of DNNs.
•Enhancing Parkinson’s disease recognition performance with retinal structural prior.•Analyzing how retinal structure information affects the decision-making process.•Modeling the relationships among various retinal layers by infusing clinical priors. |
---|---|
ISSN: | 0895-6111 1879-0771 1879-0771 |
DOI: | 10.1016/j.compmedimag.2024.102463 |