Vector-Free Deep Tissue Targeting of DNA/RNA Therapeutics via Single Capacitive Discharge Conductivity-Clamped Gene Electrotransfer
Viral vector and lipid nanoparticle based gene delivery have limitations around spatiotemporal control, transgene packaging size, and vector immune reactivity, compromising translation of nucleic acid (NA) therapeutics. In the emerging field of DNA and particularly RNA-based gene therapies, vector-f...
Gespeichert in:
Veröffentlicht in: | Advanced science 2024-11, p.e2406545 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Viral vector and lipid nanoparticle based gene delivery have limitations around spatiotemporal control, transgene packaging size, and vector immune reactivity, compromising translation of nucleic acid (NA) therapeutics. In the emerging field of DNA and particularly RNA-based gene therapies, vector-free delivery platforms are identified as a key unmet need. Here, this work addresses these challenges through gene electrotransfer (GET) of "naked" polyanionic DNA/mRNA using a single needle form-factor which supports "electro-lens" based compression of the local electric field, and local control of tissue conductivity, enabling single capacitive discharge minimal charge gene delivery. Proof-of-concept studies for "single capacitive discharge conductivity-clamped gene electrotransfer" (SCD-CC-GET) deep tissue delivery of naked DNA and mRNA in the mouse hindlimb skeletal muscle achieve stable (>18 month) expression of luciferase reporter synthetic DNA, and mRNA encoding the reporter yield rapid onset ( |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202406545 |