Vector-Free Deep Tissue Targeting of DNA/RNA Therapeutics via Single Capacitive Discharge Conductivity-Clamped Gene Electrotransfer

Viral vector and lipid nanoparticle based gene delivery have limitations around spatiotemporal control, transgene packaging size, and vector immune reactivity, compromising translation of nucleic acid (NA) therapeutics. In the emerging field of DNA and particularly RNA-based gene therapies, vector-f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2024-11, p.e2406545
Hauptverfasser: Pinyon, Jeremy L, von Jonquieres, Georg, Mow, Stephen L, Abed, Amr Al, Lai, Keng-Yin, Manoharan, Mathumathi, Crawford, Edward N, Xue, Stanley H, Smith-Moore, Sarah, Caproni, Lisa J, Milsom, Sarah, Klugmann, Matthias, Lovell, Nigel H, Housley, Gary D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Viral vector and lipid nanoparticle based gene delivery have limitations around spatiotemporal control, transgene packaging size, and vector immune reactivity, compromising translation of nucleic acid (NA) therapeutics. In the emerging field of DNA and particularly RNA-based gene therapies, vector-free delivery platforms are identified as a key unmet need. Here, this work addresses these challenges through gene electrotransfer (GET) of "naked" polyanionic DNA/mRNA using a single needle form-factor which supports "electro-lens" based compression of the local electric field, and local control of tissue conductivity, enabling single capacitive discharge minimal charge gene delivery. Proof-of-concept studies for "single capacitive discharge conductivity-clamped gene electrotransfer" (SCD-CC-GET) deep tissue delivery of naked DNA and mRNA in the mouse hindlimb skeletal muscle achieve stable (>18 month) expression of luciferase reporter synthetic DNA, and mRNA encoding the reporter yield rapid onset (
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202406545