Genomic Diversity of U.S. Katahdin Hair Sheep

In the late 1950s, Katahdin hair sheep were developed as a composite breed of medium size and moderate prolificacy, with potential to express resistance to gastrointestinal nematodes. With increasing popularity and the recent adoption of genomic prediction in their genetic evaluation, there is a ris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal breeding and genetics (1986) 2024-11
Hauptverfasser: Nilson, Sara M, Burke, Joan M, Becker, Gabrielle M, Murdoch, Brenda M, Petersen, Jessica L, Lewis, Ronald M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the late 1950s, Katahdin hair sheep were developed as a composite breed of medium size and moderate prolificacy, with potential to express resistance to gastrointestinal nematodes. With increasing popularity and the recent adoption of genomic prediction in their genetic evaluation, there is a risk of decreasing variation with selection based on genomically enhanced estimated breeding values. While Katahdin pedigrees are readily available for monitoring diversity, they may not capture the entirety of genetic relationships. We aimed to characterise the genomic population structure and diversity present in the breed, and how these impact the size of a reference population necessary to achieve accurate genomic predictions. Genotypes of Katahdin sheep from 81 member flocks in the National Sheep Improvement Program (NSIP) were used. After quality control, there were 9704 animals and 31,984 autosomal single nucleotide polymorphisms analysed. Population structure was minimal as a single ancestral population explained 99.9% of the genetic variation among animals. The current N was estimated to be 150, and despite differences in trait heritabilities, the effect of N on the accuracy of genomic predictions suggested the breed should aim for a reference population size of 15,000 individuals. The average degree of inbreeding estimated from runs of homozygosity (ROH) was 16.6% ± 4.7. Four genomic regions of interest, previously associated with production traits, contained ROH shared among > 50% of the breed. Based on four additional methods, average genomic inbreeding coefficients ranged from 0.011 to 0.012. The current population structure and diversity of the breed reflects genetic connectedness across flocks due to the sharing of animals. Shared regions of ROH should be further explored for incorporation of functional effects into genomic predictions to increase selection gains. Negative impacts on genetic diversity due to genomic selection are not of immediate concern for Katahdin sheep engaged in NSIP.
ISSN:1439-0388
1439-0388
DOI:10.1111/jbg.12914