Exosomes, Endosomes, and Caveolae as Encouraging Targets with Favorable Gut Microbiota for the Innovative Treatment of Alzheimer's Diseases
Neurodegenerative diseases are characterized by progressive damage to specific neuronal cells, resulting in cognitive impairments. Alzheimer's disease is one of the most common types of cognitive impairments. Until recently, strategies that prevent its clinical progression have remained elusive...
Gespeichert in:
Veröffentlicht in: | Discovery medicine 2024-11, Vol.36 (190), p.2132 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurodegenerative diseases are characterized by progressive damage to specific neuronal cells, resulting in cognitive impairments. Alzheimer's disease is one of the most common types of cognitive impairments. Until recently, strategies that prevent its clinical progression have remained elusive. It has been suggested that oxidative stress, mitochondrial injury, and inflammation might lead to brain cell death in many neurological disorders. Therefore, the identification of effective neuroprotective agents is a research priority, and several autophagy-targeted bioactive compounds are promising candidate therapeutics for the prevention of brain cell damage. Some Alzheimer's disease risk genes expressed within the brain are linked to cholesterol metabolism, lipid transport, endocytosis, exocytosis, and/or caveolae formation, suggesting fruitful therapeutic targets for the treatment of cognitive impairments. Among them, a well-known genetic risk factor for late-onset Alzheimer's disease is allelic variation of the Apolipoprotein E (
) genes. APOE proteins may regulate aspects of cellular homeostasis, which is perturbed in the brain in Alzheimer's disease. Interestingly, the Apolipoprotein E ε4 allele (APOE4) protein is related to autophagy and to the biogenesis of caveolae, endosomes, and exosomes, processes which might consequently be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Recent research suggests that modification of the diet and/or gut-microbiota could be effective for treatment of various neurodegenerative diseases. Collectively, this research direction has the potential to improve clinical care through disease-modifying treatment strategies with benefits for patients with neurodegenerative diseases. |
---|---|
ISSN: | 1539-6509 1944-7930 1944-7930 |
DOI: | 10.24976/Discov.Med.202436190.196 |