Resonance-Amplified Terahertz Near-Field Spectroscopy of a Single Nanowire

Nanoscale material systems are central to next-generation optoelectronic and quantum technologies, yet their development remains hindered by limited characterization tools, particularly at terahertz (THz) frequencies. Far-field THz spectroscopy techniques lack the sensitivity for investigating indiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-11, Vol.24 (49), p.15716-15723
Hauptverfasser: Norman, Sarah, Chu, Greg, Peng, Kun, Seddon, James, Hale, Lucy L, Tan, Hark Hoe, Jagadish, Chennupati, Mouthaan, Ralf, Alexander-Webber, Jack, Joyce, Hannah J, Johnston, Michael B, Mitrofanov, Oleg, Siday, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanoscale material systems are central to next-generation optoelectronic and quantum technologies, yet their development remains hindered by limited characterization tools, particularly at terahertz (THz) frequencies. Far-field THz spectroscopy techniques lack the sensitivity for investigating individual nanoscale systems, whereas in near-field THz nanoscopy, surface states, disorder, and sample-tip interactions often mask the response of the entire nanoscale system. Here, we present a THz resonance-amplified near-field spectroscopy technique that can detect subtle conductivity changes in isolated nanoscale systemssuch as a single InAs nanowireunder ultrafast photoexcitation. By exploiting the spatial localization and resonant field enhancement in the gap of a bowtie antenna, our approach enables precise measurements of the nanostructures through shifts in the antenna resonant frequency, offering a direct means of extracting the system response, and unlocking investigations of ultrafast charge-carrier dynamics in isolated nanoscale and microscale systems.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.4c04395