Clinical and Physiologically Based Pharmacokinetic Model Evaluations of Adagrasib Drug-Drug Interactions

Adagrasib is a potent, highly selective, orally available, small molecule, covalent inhibitor of G12C mutated KRAS. As both a substrate and strong inhibitor of cytochrome P450 (CYP) 3A4, adagrasib inhibits its own CYP3A4-mediated metabolism following multiple dosing, resulting in time-dependent drug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical pharmacology and therapeutics 2024-11
Hauptverfasser: Cilliers, Cornelius, Howgate, Eleanor, Jones, Hannah M, Rahbaek, Lisa, Tran, Jonathan Q
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adagrasib is a potent, highly selective, orally available, small molecule, covalent inhibitor of G12C mutated KRAS. As both a substrate and strong inhibitor of cytochrome P450 (CYP) 3A4, adagrasib inhibits its own CYP3A4-mediated metabolism following multiple dosing, resulting in time-dependent drug-drug interaction (DDI) liabilities. A physiologically-based pharmacokinetic (PBPK) model was developed and verified using a combination of physicochemical, in vitro and clinical pharmacokinetic (PK) data from healthy volunteers and cancer patients. The PBPK model well-described the single and multiple-dose adagrasib PK data as well as DDI data with itraconazole, rifampin, midazolam, warfarin, dextromethorphan, and digoxin, with model predictions within 1.5-fold of the observed clinical data. The PBPK model was used to predict untested scenarios including the clinical victim and perpetrator DDI liabilities at the approved dosing regimen of 600 mg twice daily (b.i.d.) in cancer patients. Strong, moderate, and weak inhibitors of CYP3A4 are predicted to have a negligible effect on the steady-state exposure of adagrasib 600 mg b.i.d. resulting from the significant inactivation of CYP3A4 by adagrasib. Additionally, strong and moderate inducers of CYP3A4 are predicted to decrease adagrasib exposure by 68% and 22%, respectively. As a perpetrator, adagrasib 600 mg b.i.d. is predicted to be a strong inhibitor of CYP3A4, a moderate inhibitor of CYP2C9 and CYP2D6, and an inhibitor of P-glycoprotein (P-gp). These results successfully supported regulatory interactions with the United States Food and Drug Administration regarding dosing recommendations for when adagrasib is used concomitantly with other medications, supporting a range of label claims in lieu of clinical trials.
ISSN:0009-9236
1532-6535
1532-6535
DOI:10.1002/cpt.3506