Substituting phosphorus and nitrogen in hydroponic fertilizers with a waste derived nutrients solution: pH control strategies to increase substitution ratios

Hydroponics, despite its potential for efficient crop production, relies heavily on chemical fertilizers derived from nonrenewable resources and thus contributes to environmental burdens and unsustainable use of phosphorus. Integrating hydroponics into a circular phosphorus economy is crucial for mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2024-11, Vol.369, p.143805, Article 143805
Hauptverfasser: Sakuma, Satoru, Endo, Ryosuke, Shibuya, Toshio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydroponics, despite its potential for efficient crop production, relies heavily on chemical fertilizers derived from nonrenewable resources and thus contributes to environmental burdens and unsustainable use of phosphorus. Integrating hydroponics into a circular phosphorus economy is crucial for mitigating these impacts. This study quantitatively assessed the capacity of filtrates from nitrified biogas digestate (f-NBD), a nutrient solution derived from organic waste, to replace phosphorus and nitrogen in hydroponic chemical nutrient solutions. Additionally, the influence of pH control methods on phosphorus recovery and substitution was investigated using a novel pH-rebound approach involving acidification followed by alkalinization to pH 6. The experimental results demonstrated that the pH-rebound method effectively dissolved apatite phosphorus, the predominant form of precipitated phosphorus in NBD, without inducing significant reprecipitation upon alkalinization. This pH adjustment enhanced the phosphorus solubility and optimized the nitrogen-to-phosphorus (N/P) ratio in f-NBD, enabling it to substitute up to 77% of the phosphorus and 100% of the nitrogen in standard hydroponic nutrient solutions. The study also revealed that, under certain conditions, f-NBD is as a more viable option for phosphorus recovery than struvite, a widely recognized recovered phosphorus product. The identified substitution ratios and pH optimization strategies provide valuable insights for mitigating the environmental burdens of hydroponic fertilizers. By partially replacing chemical nutrient solutions with f-NBD, hydroponics can be integrated more effectively into a circular phosphorus economy, reducing the reliance on nonrenewable resources and curtailing the environmental impacts associated with the production and use of conventional fertilizers. This research provides a basis for future initiatives aimed at developing sustainable hydroponic systems and offering new utilization methods for biogas digestate. [Display omitted] •Nitrification converts NH4-rich biogas digestate to a NO3-rich nutrient solution.•Filtrates of nitrified biogas digestate (f-NBD) remove precipitated P from NBD.•Acidification dissolves phosphorus, with only partial re-precipitation even at pH 6.•Dissolving P adjusted the N/P ratio in f-NBD to levels appropriate for hydroponics.•f-NBD can substitute 100% of N and 42%–77% of P in liquid chemical fertilizers.
ISSN:0045-6535
1879-1298
1879-1298
DOI:10.1016/j.chemosphere.2024.143805