Nano-Springe Enriched Hierarchical Porous MOP/COF Hybrid Aerogel: Efficient Recovery of Gold from Electronic Waste

Extraction of gold from secondary resources such as electronic waste (e-waste) has become crucial in recent times to compensate for the gradual scarcity of the noble metal in natural mines. However, designing and synthesizing a suitable material for highly efficient gold recovery is still a great ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-11, p.e202419830
Hauptverfasser: Majumder, Dipanjan, Fajal, Sahel, Shirolkar, Mandar M, Torris, Arun, Banyla, Yashasvi, Biswas, Kishalay, Rasaily, Sagarmani, Ghosh, Sujit K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extraction of gold from secondary resources such as electronic waste (e-waste) has become crucial in recent times to compensate for the gradual scarcity of the noble metal in natural mines. However, designing and synthesizing a suitable material for highly efficient gold recovery is still a great challenge. Herein, we have strategically designed rapid fabrication of an ionic crystalline hybrid aerogel by covalent threading of an amino-functionalized metal-organic polyhedra with an imine-linked chemically stable covalent organic framework at ambient condition. The hierarchically porous ultra-light aerogel featuring imine-rich backbone, high surface area, and cationic sites have shown fast removal, high uptake capacity (2349 mg/g), and excellent selectivity towards gold sequestration. Besides, the aerogel can extract ultra-trace gold-ions from different terrestrial water bodies, aiming towards safe drinking water. This study demonstrates the great potential of the composite materials based on a novel approach to designing a hybrid porous material for efficient gold recovery from complex water matrices.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202419830