mRNA compartmentalization via multimodule DNA nanostructure assembly augments the immunogenicity and efficacy of cancer mRNA vaccine

Messenger RNA (mRNA) vaccine has fueled a great hope for cancer immunotherapy. However, low immunogenicity, caused by inefficient mRNA expression and weak immune stimulation, hampers the efficacy of mRNA vaccines. Here, we present an mRNA compartmentalization-based cancer vaccine, comprising a multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-11, Vol.10 (47), p.eadp3680
Hauptverfasser: Guo, Xiaocui, Guo, Mengyu, Cai, Rong, Hu, Mingdi, Rao, Le, Su, Wen, Liu, He, Gao, Fene, Zhang, Xiaoyu, Liu, Jing, Chen, Chunying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Messenger RNA (mRNA) vaccine has fueled a great hope for cancer immunotherapy. However, low immunogenicity, caused by inefficient mRNA expression and weak immune stimulation, hampers the efficacy of mRNA vaccines. Here, we present an mRNA compartmentalization-based cancer vaccine, comprising a multimodule DNA nanostructure (MMDNS)-assembled compartment for efficient mRNA translation via in situ localizing mRNA concentration and relevant reaction molecules. The MMDNS is constructed via programmable DNA hybridization chain reaction (HCR)-based strategy, with integrating antigen-coded mRNA, CpG oligodeoxynucleotides (ODNs), acidic-responsive DNA sequence, and dendritic cells targeting aptamer. MMDNS undergoes in situ assembly in acidic lysosomes to form a micro-sized aggregate, inducing an enhanced CpG ODN adjuvant efficacy. Subsequently, the aggregates escape into cytoplasm, providing a moderate compartment which supports the efficient translation of spatially proximal mRNA transcripts via localizing relevant reaction molecules. The mRNA compartmentalization-based vaccine boosts a strong immune response and effectively inhibits tumor growth and metastasis, offering a robust strategy for cancer immunotherapy.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.adp3680