An injectable epoxidized soybean oil/gelatin-based photothermal biogel with remarkable rapid hemostasis capability for wound repair

The development of wound dressings with rapid hemostasis, antibacterial activity without the addition of antibiotics and on-demand removability that effectively avoid secondary damage to the wound during replacement still faces significant challenges. Herein, injectable epoxidized soybean oil/gelati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-12, Vol.283 (Pt 4), p.137902, Article 137902
Hauptverfasser: Wang, Zhen, Wu, Tong, Zhao, Fangzheng, Zhao, Chunyue, Ma, Feifei, Song, Huijuan, Chen, Ligong, Wang, Weiwei, Xing, Jinfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of wound dressings with rapid hemostasis, antibacterial activity without the addition of antibiotics and on-demand removability that effectively avoid secondary damage to the wound during replacement still faces significant challenges. Herein, injectable epoxidized soybean oil/gelatin-based photothermal biogel with outstanding tissue adhesion, on-demand removability, shape-adaptability, and antibacterial performance is prepared as a removable wound dressing for wound repair. The biogel is composed of two types of hydrophilic/hydrophobic three-dimensional network structures, which interweave together through dynamic imine bonds, coordination bonds and numerous hydrogen bonds to synergistically improve injectability, self-healing, tissue adhesion, and compressive performance of the biogel. Moreover, the prepared EG-02 biogel not only has excellent thermal stability, biodegradability, hemocompatibility, and RBCs and platelet adhesion properties, but also displays outstanding cytocompatibility and the ability to promote cell migration. Furthermore, the EG-02 biogel treated with a near-infrared (NIR) laser (808 nm, 0.2 W·cm−2) exhibits prominent photothermal cycling stability and antibacterial performance. Notably, the EG-02 biogel presents remarkable rapid hemostasis capability, with the hemostatic time greatly shortened to 40 s and the blood loss significantly reduced to 89.2 mg. Therefore, the injectable photothermal biogel, as a fascinating candidate for on-demand removable wound dressing, has shown promising application prospects in wound repair. •Injectable ESO/gelatin-based photothermal biogel is prepared for wound repair.•The biogel exhibits outstanding tissue adhesion and on-demand removability.•The biogel displays prominent photothermal stability and antibacterial performance.•The biogel presents remarkable rapid hemostasis capability for wound repair.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.137902