Short-sighted evolution of virulence for invasive gut microbes: From hypothesis to tests

Why microbes harm their hosts is a fundamental question in evolutionary biology with broad relevance to our understanding of infectious diseases. Several hypotheses have been proposed to explain this "evolution of virulence." In this perspective, we reexamine one of these hypotheses in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-12, Vol.121 (49), p.e2409905121
Hauptverfasser: Scanlan, Pauline D, Baquero, Fernando, Levin, Bruce R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Why microbes harm their hosts is a fundamental question in evolutionary biology with broad relevance to our understanding of infectious diseases. Several hypotheses have been proposed to explain this "evolution of virulence." In this perspective, we reexamine one of these hypotheses in the specific context of the human gut microbiome, namely short-sighted evolution. According to the short-sighted evolution hypothesis, virulence is a product of niche expansion within a colonized host, whereby variants of commensal microbes establish populations in tissues and sites where the infection causes morbidity or mortality. This evolution is short-sighted in that the evolved variants that infect those tissues and sites are not transmitted to other hosts. The specific hypothesis that we propose is that some bacteria responsible for invasive infections and disease are the products of the short-sighted evolution of commensal bacteria residing in the gut microbiota. We present observations in support of this hypothesis and discuss the challenges inherent in assessing its general application to infections and diseases associated with specific members of the gut microbiota. We then describe how this hypothesis can be tested using genomic data and animal model experiments and outline how such studies will serve to provide fundamental information about both the evolution and genetic basis of virulence, and the bacteria of intensively studied yet poorly understood habitats including the gut microbiomes of humans and other mammals.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.2409905121