How to select agroforestry waste biomass for electrospinning and its potential application in bone tissue engineering
The high value-added utilization of agroforestry waste biomass is an urgent requirment. Herein, a feasible approach was provided to obtain biodegradable cellulose fibrous films from agroforestry waste biomass. The cellulose used was extracted from agroforestry waste biomass and then the cellulose fi...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2025-01, Vol.348 (Pt B), p.122921, Article 122921 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The high value-added utilization of agroforestry waste biomass is an urgent requirment. Herein, a feasible approach was provided to obtain biodegradable cellulose fibrous films from agroforestry waste biomass. The cellulose used was extracted from agroforestry waste biomass and then the cellulose fibrous film was obtained by direct electrospinning. Lignin-carbohydrate complex (LCC) structure was considered as the key factor for the dissolution of lignocellulose, while cellulose molecular weight > 335,664 was suitable for electrospinning. Bamboo cellulose was chosen as an example to verify the potential application of the electrospun cellulose films from agroforestry waste biomass. The as-prepared electrospun bamboo cellulose fibrous film exhibited a tensile strength of 24.12 MPa, which outperformed most of the reported electrospun nanofibrous films. Moreover, the film possessed a super-wetting surface and outstanding cytocompatibility. These excellent properties offer the film with immense potential for application in bone tissue engineering. In addition, this work provides a new route for transforming agroforestry waste into high value-added products.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 1879-1344 |
DOI: | 10.1016/j.carbpol.2024.122921 |