Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time

A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2025-01, Vol.348 (Pt B), p.122934, Article 122934
Hauptverfasser: Zhao, Siqi, Wu, Jiawei, Guo, Zhenqi, Liu, Qiang, Guo, Liping, Kong, Jianlei, Zuo, Min, Ding, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Pt B
container_start_page 122934
container_title Carbohydrate polymers
container_volume 348
creator Zhao, Siqi
Wu, Jiawei
Guo, Zhenqi
Liu, Qiang
Guo, Liping
Kong, Jianlei
Zuo, Min
Ding, Chao
description A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice. [Display omitted]
doi_str_mv 10.1016/j.carbpol.2024.122934
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131499296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861724011603</els_id><sourcerecordid>3131499296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-30e21a60e5e2f406f34c4581ab93e096a81a8ff0d098dcf2dd1d94469beee3cc3</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi1ERUPhEUA-cugG_8tmzQWhqkClSr20Z8sZjxuH3fVieyuFd-IdcUhA4sRcZg7f_D6PP0LecLbkjLfvd0uwaTPFfimYUEsuhJbqGVnwbq0bLpV6ThaMK9V0LV-fk5c571itlrMX5FzqVbvmTC_Iz5thslBo9HSwjyOWANQH7F1jcw65oKM-If4I4yONIy1bpNN2nwNE2OIQwPZ0SnHCVAJmakdHc7EJtrWlGcqc8ICGGL9VUgqAH-i19wgl_2NZ9hPmSxrGgmMOB9blbxikfazA-hJawoCvyJm3fcbXp35BHj5f3199bW7vvtxcfbptQChZGslQcNsyXKHwirVeKlCrjtuNlsh0a-vYec8c050DL5zjTivV6g0iSgB5Qd4dufW27zPmYoaQAfvejhjnbCSXXGktdFulq6MUUsw5oTdTCoNNe8OZOSRlduaUlDkkZY5J1b23J4t5M6D7u_Unmir4eBRgPfQpYDIZAo6ALqT6f8bF8B-LX3O_q_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131499296</pqid></control><display><type>article</type><title>Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Siqi ; Wu, Jiawei ; Guo, Zhenqi ; Liu, Qiang ; Guo, Liping ; Kong, Jianlei ; Zuo, Min ; Ding, Chao</creator><creatorcontrib>Zhao, Siqi ; Wu, Jiawei ; Guo, Zhenqi ; Liu, Qiang ; Guo, Liping ; Kong, Jianlei ; Zuo, Min ; Ding, Chao</creatorcontrib><description>A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice. [Display omitted]</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2024.122934</identifier><identifier>PMID: 39567109</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cooking - methods ; Freezing ; Frozen cooked rice ; Magnetic field ; Magnetic Fields ; Oryza - chemistry ; Physicochemical properties ; Starch - chemistry ; Starch structure ; Storage stability ; Taste</subject><ispartof>Carbohydrate polymers, 2025-01, Vol.348 (Pt B), p.122934, Article 122934</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-30e21a60e5e2f406f34c4581ab93e096a81a8ff0d098dcf2dd1d94469beee3cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2024.122934$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39567109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Siqi</creatorcontrib><creatorcontrib>Wu, Jiawei</creatorcontrib><creatorcontrib>Guo, Zhenqi</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Guo, Liping</creatorcontrib><creatorcontrib>Kong, Jianlei</creatorcontrib><creatorcontrib>Zuo, Min</creatorcontrib><creatorcontrib>Ding, Chao</creatorcontrib><title>Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice. [Display omitted]</description><subject>Cooking - methods</subject><subject>Freezing</subject><subject>Frozen cooked rice</subject><subject>Magnetic field</subject><subject>Magnetic Fields</subject><subject>Oryza - chemistry</subject><subject>Physicochemical properties</subject><subject>Starch - chemistry</subject><subject>Starch structure</subject><subject>Storage stability</subject><subject>Taste</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9uEzEQxi1ERUPhEUA-cugG_8tmzQWhqkClSr20Z8sZjxuH3fVieyuFd-IdcUhA4sRcZg7f_D6PP0LecLbkjLfvd0uwaTPFfimYUEsuhJbqGVnwbq0bLpV6ThaMK9V0LV-fk5c571itlrMX5FzqVbvmTC_Iz5thslBo9HSwjyOWANQH7F1jcw65oKM-If4I4yONIy1bpNN2nwNE2OIQwPZ0SnHCVAJmakdHc7EJtrWlGcqc8ICGGL9VUgqAH-i19wgl_2NZ9hPmSxrGgmMOB9blbxikfazA-hJawoCvyJm3fcbXp35BHj5f3199bW7vvtxcfbptQChZGslQcNsyXKHwirVeKlCrjtuNlsh0a-vYec8c050DL5zjTivV6g0iSgB5Qd4dufW27zPmYoaQAfvejhjnbCSXXGktdFulq6MUUsw5oTdTCoNNe8OZOSRlduaUlDkkZY5J1b23J4t5M6D7u_Unmir4eBRgPfQpYDIZAo6ALqT6f8bF8B-LX3O_q_4</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Zhao, Siqi</creator><creator>Wu, Jiawei</creator><creator>Guo, Zhenqi</creator><creator>Liu, Qiang</creator><creator>Guo, Liping</creator><creator>Kong, Jianlei</creator><creator>Zuo, Min</creator><creator>Ding, Chao</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250115</creationdate><title>Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time</title><author>Zhao, Siqi ; Wu, Jiawei ; Guo, Zhenqi ; Liu, Qiang ; Guo, Liping ; Kong, Jianlei ; Zuo, Min ; Ding, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-30e21a60e5e2f406f34c4581ab93e096a81a8ff0d098dcf2dd1d94469beee3cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cooking - methods</topic><topic>Freezing</topic><topic>Frozen cooked rice</topic><topic>Magnetic field</topic><topic>Magnetic Fields</topic><topic>Oryza - chemistry</topic><topic>Physicochemical properties</topic><topic>Starch - chemistry</topic><topic>Starch structure</topic><topic>Storage stability</topic><topic>Taste</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Siqi</creatorcontrib><creatorcontrib>Wu, Jiawei</creatorcontrib><creatorcontrib>Guo, Zhenqi</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Guo, Liping</creatorcontrib><creatorcontrib>Kong, Jianlei</creatorcontrib><creatorcontrib>Zuo, Min</creatorcontrib><creatorcontrib>Ding, Chao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Siqi</au><au>Wu, Jiawei</au><au>Guo, Zhenqi</au><au>Liu, Qiang</au><au>Guo, Liping</au><au>Kong, Jianlei</au><au>Zuo, Min</au><au>Ding, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2025-01-15</date><risdate>2025</risdate><volume>348</volume><issue>Pt B</issue><spage>122934</spage><pages>122934-</pages><artnum>122934</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39567109</pmid><doi>10.1016/j.carbpol.2024.122934</doi></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2025-01, Vol.348 (Pt B), p.122934, Article 122934
issn 0144-8617
1879-1344
1879-1344
language eng
recordid cdi_proquest_miscellaneous_3131499296
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Cooking - methods
Freezing
Frozen cooked rice
Magnetic field
Magnetic Fields
Oryza - chemistry
Physicochemical properties
Starch - chemistry
Starch structure
Storage stability
Taste
title Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20magnetic%20field-assisted%20freezing%20on%20the%20physicochemical%20properties%20and%20starch%20structure%20of%20cooked%20rice:%20Effects%20of%20magnetic%20types,%20intensities,%20and%20cryostasis%20time&rft.jtitle=Carbohydrate%20polymers&rft.au=Zhao,%20Siqi&rft.date=2025-01-15&rft.volume=348&rft.issue=Pt%20B&rft.spage=122934&rft.pages=122934-&rft.artnum=122934&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2024.122934&rft_dat=%3Cproquest_cross%3E3131499296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131499296&rft_id=info:pmid/39567109&rft_els_id=S0144861724011603&rfr_iscdi=true