Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time
A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing character...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2025-01, Vol.348 (Pt B), p.122934, Article 122934 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | Pt B |
container_start_page | 122934 |
container_title | Carbohydrate polymers |
container_volume | 348 |
creator | Zhao, Siqi Wu, Jiawei Guo, Zhenqi Liu, Qiang Guo, Liping Kong, Jianlei Zuo, Min Ding, Chao |
description | A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice.
[Display omitted] |
doi_str_mv | 10.1016/j.carbpol.2024.122934 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131499296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861724011603</els_id><sourcerecordid>3131499296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-30e21a60e5e2f406f34c4581ab93e096a81a8ff0d098dcf2dd1d94469beee3cc3</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi1ERUPhEUA-cugG_8tmzQWhqkClSr20Z8sZjxuH3fVieyuFd-IdcUhA4sRcZg7f_D6PP0LecLbkjLfvd0uwaTPFfimYUEsuhJbqGVnwbq0bLpV6ThaMK9V0LV-fk5c571itlrMX5FzqVbvmTC_Iz5thslBo9HSwjyOWANQH7F1jcw65oKM-If4I4yONIy1bpNN2nwNE2OIQwPZ0SnHCVAJmakdHc7EJtrWlGcqc8ICGGL9VUgqAH-i19wgl_2NZ9hPmSxrGgmMOB9blbxikfazA-hJawoCvyJm3fcbXp35BHj5f3199bW7vvtxcfbptQChZGslQcNsyXKHwirVeKlCrjtuNlsh0a-vYec8c050DL5zjTivV6g0iSgB5Qd4dufW27zPmYoaQAfvejhjnbCSXXGktdFulq6MUUsw5oTdTCoNNe8OZOSRlduaUlDkkZY5J1b23J4t5M6D7u_Unmir4eBRgPfQpYDIZAo6ALqT6f8bF8B-LX3O_q_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131499296</pqid></control><display><type>article</type><title>Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Siqi ; Wu, Jiawei ; Guo, Zhenqi ; Liu, Qiang ; Guo, Liping ; Kong, Jianlei ; Zuo, Min ; Ding, Chao</creator><creatorcontrib>Zhao, Siqi ; Wu, Jiawei ; Guo, Zhenqi ; Liu, Qiang ; Guo, Liping ; Kong, Jianlei ; Zuo, Min ; Ding, Chao</creatorcontrib><description>A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice.
[Display omitted]</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2024.122934</identifier><identifier>PMID: 39567109</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Cooking - methods ; Freezing ; Frozen cooked rice ; Magnetic field ; Magnetic Fields ; Oryza - chemistry ; Physicochemical properties ; Starch - chemistry ; Starch structure ; Storage stability ; Taste</subject><ispartof>Carbohydrate polymers, 2025-01, Vol.348 (Pt B), p.122934, Article 122934</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-30e21a60e5e2f406f34c4581ab93e096a81a8ff0d098dcf2dd1d94469beee3cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2024.122934$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39567109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Siqi</creatorcontrib><creatorcontrib>Wu, Jiawei</creatorcontrib><creatorcontrib>Guo, Zhenqi</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Guo, Liping</creatorcontrib><creatorcontrib>Kong, Jianlei</creatorcontrib><creatorcontrib>Zuo, Min</creatorcontrib><creatorcontrib>Ding, Chao</creatorcontrib><title>Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice.
[Display omitted]</description><subject>Cooking - methods</subject><subject>Freezing</subject><subject>Frozen cooked rice</subject><subject>Magnetic field</subject><subject>Magnetic Fields</subject><subject>Oryza - chemistry</subject><subject>Physicochemical properties</subject><subject>Starch - chemistry</subject><subject>Starch structure</subject><subject>Storage stability</subject><subject>Taste</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9uEzEQxi1ERUPhEUA-cugG_8tmzQWhqkClSr20Z8sZjxuH3fVieyuFd-IdcUhA4sRcZg7f_D6PP0LecLbkjLfvd0uwaTPFfimYUEsuhJbqGVnwbq0bLpV6ThaMK9V0LV-fk5c571itlrMX5FzqVbvmTC_Iz5thslBo9HSwjyOWANQH7F1jcw65oKM-If4I4yONIy1bpNN2nwNE2OIQwPZ0SnHCVAJmakdHc7EJtrWlGcqc8ICGGL9VUgqAH-i19wgl_2NZ9hPmSxrGgmMOB9blbxikfazA-hJawoCvyJm3fcbXp35BHj5f3199bW7vvtxcfbptQChZGslQcNsyXKHwirVeKlCrjtuNlsh0a-vYec8c050DL5zjTivV6g0iSgB5Qd4dufW27zPmYoaQAfvejhjnbCSXXGktdFulq6MUUsw5oTdTCoNNe8OZOSRlduaUlDkkZY5J1b23J4t5M6D7u_Unmir4eBRgPfQpYDIZAo6ALqT6f8bF8B-LX3O_q_4</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Zhao, Siqi</creator><creator>Wu, Jiawei</creator><creator>Guo, Zhenqi</creator><creator>Liu, Qiang</creator><creator>Guo, Liping</creator><creator>Kong, Jianlei</creator><creator>Zuo, Min</creator><creator>Ding, Chao</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250115</creationdate><title>Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time</title><author>Zhao, Siqi ; Wu, Jiawei ; Guo, Zhenqi ; Liu, Qiang ; Guo, Liping ; Kong, Jianlei ; Zuo, Min ; Ding, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-30e21a60e5e2f406f34c4581ab93e096a81a8ff0d098dcf2dd1d94469beee3cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cooking - methods</topic><topic>Freezing</topic><topic>Frozen cooked rice</topic><topic>Magnetic field</topic><topic>Magnetic Fields</topic><topic>Oryza - chemistry</topic><topic>Physicochemical properties</topic><topic>Starch - chemistry</topic><topic>Starch structure</topic><topic>Storage stability</topic><topic>Taste</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Siqi</creatorcontrib><creatorcontrib>Wu, Jiawei</creatorcontrib><creatorcontrib>Guo, Zhenqi</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Guo, Liping</creatorcontrib><creatorcontrib>Kong, Jianlei</creatorcontrib><creatorcontrib>Zuo, Min</creatorcontrib><creatorcontrib>Ding, Chao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Siqi</au><au>Wu, Jiawei</au><au>Guo, Zhenqi</au><au>Liu, Qiang</au><au>Guo, Liping</au><au>Kong, Jianlei</au><au>Zuo, Min</au><au>Ding, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2025-01-15</date><risdate>2025</risdate><volume>348</volume><issue>Pt B</issue><spage>122934</spage><pages>122934-</pages><artnum>122934</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>39567109</pmid><doi>10.1016/j.carbpol.2024.122934</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2025-01, Vol.348 (Pt B), p.122934, Article 122934 |
issn | 0144-8617 1879-1344 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_3131499296 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Cooking - methods Freezing Frozen cooked rice Magnetic field Magnetic Fields Oryza - chemistry Physicochemical properties Starch - chemistry Starch structure Storage stability Taste |
title | Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20magnetic%20field-assisted%20freezing%20on%20the%20physicochemical%20properties%20and%20starch%20structure%20of%20cooked%20rice:%20Effects%20of%20magnetic%20types,%20intensities,%20and%20cryostasis%20time&rft.jtitle=Carbohydrate%20polymers&rft.au=Zhao,%20Siqi&rft.date=2025-01-15&rft.volume=348&rft.issue=Pt%20B&rft.spage=122934&rft.pages=122934-&rft.artnum=122934&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2024.122934&rft_dat=%3Cproquest_cross%3E3131499296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131499296&rft_id=info:pmid/39567109&rft_els_id=S0144861724011603&rfr_iscdi=true |