Impact of magnetic field-assisted freezing on the physicochemical properties and starch structure of cooked rice: Effects of magnetic types, intensities, and cryostasis time

A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2025-01, Vol.348 (Pt B), p.122934, Article 122934
Hauptverfasser: Zhao, Siqi, Wu, Jiawei, Guo, Zhenqi, Liu, Qiang, Guo, Liping, Kong, Jianlei, Zuo, Min, Ding, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A magnetic field-assisted freezing system was developed to mitigate the degradation of taste quality in frozen cooked rice (FCR). The physicochemical properties and starch structure were analyzed under varying magnetic field types, intensities, and cryostasis time. The analysis of freezing characteristics indicated that treatments with 10 mT static magnetic fields (SMF) and 6 mT alternating magnetic fields (AMF) yielded optimal results, significantly reducing the duration of the maximum ice crystal generation zone by approximately 18 min. Compared to no magnetic field (NMF) treatment, a 16-day frozen storage experiment showed significant improvements in the texture characteristics of cooked rice treated with magnetic fields. However, the moisture content of rice treated with AMF closely resembled those of freshly cooked rice, with a slight increase in yellowness compared to SMF treatment. Throughout the storage period, the crystallinity for the AMF treatment exceeded that of the SMF treatment by 2.99 %. Furthermore, compared to SMF treatment, water molecules in FCR treated with AMF are more tightly bound. Given the superior sensory scores in the AMF treatment, it can be concluded that while SMF reduces color degradation, AMF is more effective in preserving moisture, and structural density. Hence, magnetic fields, especially AMF, emerge as a promising auxiliary technology for FCR, offering a theoretical basis for advancing cold chain logistics technology for cooked rice. [Display omitted]
ISSN:0144-8617
1879-1344
1879-1344
DOI:10.1016/j.carbpol.2024.122934