Disruption of the pkac2 gene in Pleurotus ostreatus alters cell wall structures and enables mycelial dispersion in liquid culture
In this study, we developed a mycelial dispersion strain by disrupting the pkac2 gene in the white-rot fungus Pleurotus ostreatus. pkac2 is a catalytic subunit gene of protein kinase A, which regulates several transcription factors related to cell wall synthesis. Liquid cultures of the Δpkac2 strain...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology letters 2024-01, Vol.371 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we developed a mycelial dispersion strain by disrupting the pkac2 gene in the white-rot fungus Pleurotus ostreatus. pkac2 is a catalytic subunit gene of protein kinase A, which regulates several transcription factors related to cell wall synthesis. Liquid cultures of the Δpkac2 strains showed very high mycelial dispersibility and were visibly different from the wild-type (WT) strain. Although growth on agar medium was slower than that of WT, Δpkac2 strains grew faster in liquid culture and had approximately twice the mycelial dry weight of WT after 5 days of culture. Microscopic observations showed that the cell walls of the Δpkac2 strains were thinner compared to WT. The β-glucan content in the cell walls decreased in the pkac2 disruptants, although the transcription levels of β-glucan synthase genes increased. Furthermore, the Δpkac2 strains showed decreased hydrophobicity and stress tolerance compared to WT. These results indicate that disruption of the pkac2 gene in P. ostreatus alters the structure of the cell wall surface layer, resulting in high-density cultures due to mycelial dispersion. |
---|---|
ISSN: | 1574-6968 1574-6968 |
DOI: | 10.1093/femsle/fnae101 |