Universality in long-range interacting systems: The effective dimension approach

Dimensional correspondences have a long history in critical phenomena. Here, we review the effective dimension approach, which relates the scaling exponents of a critical system in d spatial dimensions with power-law decaying interactions r^{d+σ} to a local system, i.e., with finite-range interactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2024-10, Vol.110 (4-1), p.044121, Article 044121
Hauptverfasser: Solfanelli, Andrea, Defenu, Nicolò
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dimensional correspondences have a long history in critical phenomena. Here, we review the effective dimension approach, which relates the scaling exponents of a critical system in d spatial dimensions with power-law decaying interactions r^{d+σ} to a local system, i.e., with finite-range interactions, in an effective fractal dimension d_{eff}. This method simplifies the study of long-range models by leveraging known results from their local counterparts. While the validity of this approximation beyond the mean-field level has been long debated, we demonstrate that the effective dimension approach, while approximate for non-Gaussian fixed points, accurately estimates the critical exponents of long-range models with an accuracy typically larger than 97%. To do so, we review perturbative renormalization-group (RG) results, extend the approximation's validity using functional RG techniques, and compare our findings with precise numerical data from conformal bootstrap for the two-dimensional Ising model with long-range interactions.
ISSN:2470-0045
2470-0053
2470-0053
DOI:10.1103/PhysRevE.110.044121