Femtosecond Raman-induced Kerr effect spectroscopic study of the intermolecular dynamics in aqueous solutions of imidazolium hydrochloride, imidazole, sodium triazolide, and triazole: concentration dependence
In this study, we employed femtosecond Raman-induced Kerr effect spectroscopy to analyze the concentration-dependent intermolecular dynamics in positively or negatively charged aromatics and their neutral analogous aromatics (imidazolium hydrochloride (ImHCl), imidazole (Im), sodium triazolide (NaTr...
Gespeichert in:
Veröffentlicht in: | Analytical sciences 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we employed femtosecond Raman-induced Kerr effect spectroscopy to analyze the concentration-dependent intermolecular dynamics in positively or negatively charged aromatics and their neutral analogous aromatics (imidazolium hydrochloride (ImHCl), imidazole (Im), sodium triazolide (NaTr), and triazole (Tr)) in aqueous solutions at 293 K. We also measured their liquid properties, such as density, viscosity, and surface tension, at 293 K, and compared them with their dynamic properties. Furthermore, we performed the quantum chemistry calculations of the target aromatics and some clusters to elucidate their optimized structures, interaction energies, charge populations, and Raman-active normal modes. We characterized the Kerr transients over 2 ps using a triexponential function. The results revealed that the aqueous solutions' intermediate and slow relaxation time constants were linearly proportional to the viscosities. The slopes of the time constants to the viscosity of the aqueous ImHCl solutions were steeper than those of the aqueous Im solutions, whereas the slopes of the aqueous NaTr solutions were milder than those of the aqueous Tr solutions. These findings indicated that the charge of the aromatics in the aqueous solutions affected the coupling parameter between the solute and solvent in the orientational dynamics with different ways. The first moment (M
) of the low-frequency band ( |
---|---|
ISSN: | 0910-6340 1348-2246 1348-2246 |
DOI: | 10.1007/s44211-024-00692-7 |