Augmenting antioxidative capacity of myosin and cytoprotective potential of myosin digestion products through the integration of crocin and crocetin: A comprehensive analysis via quantum chemical computing and molecular dynamics

This study explores the binding properties of two important constituents from Crocus sativus L (crocin and crocetin) with myosin, examining their influence on antioxidant capacity in myosin and a grilled meat model. And their impact on cytoprotective potential of myosin digestion products was also a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2025-02, Vol.465 (Pt 2), p.142053, Article 142053
Hauptverfasser: Xue, Chaoyi, Zhang, Jian, Zhang, Chenxia, Hu, Zhonghao, Liu, Huixue, Mo, Lan, Li, Maiquan, Lou, Aihua, Shen, Qingwu, Luo, Jie, Wang, Shuai, Quan, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study explores the binding properties of two important constituents from Crocus sativus L (crocin and crocetin) with myosin, examining their influence on antioxidant capacity in myosin and a grilled meat model. And their impact on cytoprotective potential of myosin digestion products was also assessed in Caco-2 cells. Crocin and crocetin exhibited discernible binding affinity to myosin via static quenching, which induced conformational alterations that bolstered the antioxidant capacity of myosin, preventing peroxidation, which also corroborated in a grilled meat model. Crocin resulted in greater enhancement of antioxidant capacity and binding affinity, as confirmed by quantum chemical calculations. Molecular dynamics simulations revealed the stable binding of crocin to GLU:272, GLU:606, GLN:628, and PHE:417 residues of myosin. In addition, crocin substantially enhanced the protective efficacy of myosin digestion products against H2O2-induced damage in Caco-2 cells by upregulating superoxide dismutase and GSH-Px and simultaneously downregulating reactive oxygen species and malondialdehyde levels. [Display omitted] •Crocin and crocetin can bind to myosin, boosted myosin's antioxidant capacity.•Crocin show stronger antioxidant and binding ability compared to crocetin.•Crocin can stably bind to residue GLU:272, GLU:606, GLN:628, and PHE:417.•Crocin enhanced the protective ability of myosin digestion products.
ISSN:0308-8146
1873-7072
1873-7072
DOI:10.1016/j.foodchem.2024.142053