The impact of nickel on plant growth and oxidative balance

This review summarizes the impact of nickel (Ni) in hydroponics on the growth, basic biochemical parameters and oxidative balance in angiosperms using data from 66 papers (and 181 treatments). Generally, changes in biomass, pigments (chlorophylls and carotenoids) and proteins were negative when comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2024-11, Vol.176 (6), p.e14595-n/a
Hauptverfasser: Kováčik, Jozef, Vydra, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This review summarizes the impact of nickel (Ni) in hydroponics on the growth, basic biochemical parameters and oxidative balance in angiosperms using data from 66 papers (and 181 treatments). Generally, changes in biomass, pigments (chlorophylls and carotenoids) and proteins were negative when comparing concentration (≤100 and >100 μM) and time (≤14 and >14 days). However, we could deduce a higher tolerance to Ni excess in dicots than in monocots. Growth and basic metabolites were often significantly positively correlated. In contrast to proteins, amino acids were positively affected by Ni, indicating proline accumulation and/or protein catabolism. The increase in hydrogen peroxide (H2O2) content was stimulated by time and Ni concentration, and it is higher in dicots and usually negatively correlated with basic metabolites. An increase in Ni concentration stimulates the increase of thiols, but a longer exposure has a neutral or negative effect. On the contrary, the amount of vitamin C (ascorbic acid) is positively influenced by the dose of Ni in roots and the duration of excess Ni in shoots, which points to dynamic changes of this antioxidant in individual organs. Soluble phenols were not as affected, but their importance appears especially in shoots during long‐term exposure to Ni with a simultaneous increase in H2O2 content, confirming their antioxidative role. We emphasize that due to the significant quantitative variability in the published studies, we analyze the presented parameters as a percentage change.
ISSN:0031-9317
1399-3054
1399-3054
DOI:10.1111/ppl.14595