The Emissive and Electrochemical Properties of Hypervalent Pyridine-Dipyrrolide Bismuth Complexes

We present a series of six hypervalent bismuth complexes Bi( PDP )X bearing ligands characterized by the pyridine-2,6-bis(pyrrolide) (PDP) structural motif. While bismuth holds considerable potential for facilitating efficient intersystem crossing (ISC), reports on phosphorescent molecular bismuth c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2024-11, p.e202403761
Hauptverfasser: Deuter, Katharina L, Kather, Felix, Linseis, Michael, Bodensteiner, Michael, Winter, Rainer F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a series of six hypervalent bismuth complexes Bi( PDP )X bearing ligands characterized by the pyridine-2,6-bis(pyrrolide) (PDP) structural motif. While bismuth holds considerable potential for facilitating efficient intersystem crossing (ISC), reports on phosphorescent molecular bismuth complexes are still scarce and mostly based on systems that exhibit inter- or intraligand charge transfer character of their optical excitations. Herein, the UV/vis absorptive, luminescent, and electrochemical properties of complexes Bi( PDP )X are explored, where the substituents R and R , as well as the halide ligand X are varied. These compounds are characterized by an intense HOMO→LUMO transition of mixed ligand-to-metal charge transfer (LMCT) and interligand charge transfer (LL'CT) character, as shown by time-dependent density functional theory (TD-DFT) calculations. At 77 K in a 2-MeTHF matrix, these compounds exhibit red, long-lived phosphorescence with lifetimes ranging from 479 to 14 μs. Cyclic voltammetry measurements and TD-DFT calculations show that the substituents influence HOMO and LUMO energies to almost equal extent, resulting in nearly constant emission wavelengths throughout this series. Single-crystal X-ray diffraction studies of four of the six complexes exemplify the inherent Lewis acidity of the coordinated Bi ion, in spite of its hypervalency.
ISSN:1521-3765
1521-3765
DOI:10.1002/chem.202403761