Efficient suppression of premature termination codons with alanine by engineered chimeric pyrrolysine tRNAs

Mutations that introduce premature termination codons (PTCs) within protein-coding genes are associated with incurable and severe genetic diseases. Many PTC-associated disorders are life-threatening and have no approved medical treatment options. Suppressor transfer RNAs (sup-tRNAs) with the capacit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-12, Vol.52 (22), p.14244
Hauptverfasser: Awawdeh, Aya, Tapia, Alejandro, Alshawi, Sarah A, Dawodu, Olabode, Gaier, Sarah A, Specht, Caitlin, Beaudoin, Jean-Denis, Tharp, Jeffery M, Vargas-Rodriguez, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutations that introduce premature termination codons (PTCs) within protein-coding genes are associated with incurable and severe genetic diseases. Many PTC-associated disorders are life-threatening and have no approved medical treatment options. Suppressor transfer RNAs (sup-tRNAs) with the capacity to translate PTCs represent a promising therapeutic strategy to treat these conditions; however, developing novel sup-tRNAs with high efficiency and specificity often requires extensive engineering and screening. Moreover, these efforts are not always successful at producing more efficient sup-tRNAs. Here we show that a pyrrolysine (Pyl) tRNA (tRNAPyl), which naturally translates the UAG stop codon, offers a favorable scaffold for developing sup-tRNAs that restore protein synthesis from PTC-containing genes. We created a series of rationally designed Pyl tRNAScaffold Suppressor-tRNAs (PASS-tRNAs) that are substrates of bacterial and human alanyl-tRNA synthetase. Using a PTC-containing fluorescent reporter gene, PASS-tRNAs restore protein synthesis to wild-type levels in bacterial cells. In human cells, PASS-tRNAs display robust and consistent PTC suppression in multiple reporter genes, including pathogenic mutations in the tumor suppressor gene BRCA1 associated with breast and ovarian cancer. Moreover, PTC suppression occurred with high codon specificity and no observed cellular dysregulation. Collectively, these results unveil a new class of sup-tRNAs with encouraging potential for tRNA-based therapeutic applications.
ISSN:0305-1048
1362-4962
1362-4962
DOI:10.1093/nar/gkae1048