Regions of interest in opportunistic computed tomography-based screening for osteoporosis: impact on short-term in vivo precision

To determine an optimal region of interest (ROI) for opportunistic screening of osteoporosis in terms of short-term in vivo diagnostic precision. We included patients who underwent two CT scans and one dual-energy X-ray absorptiometry scan within a month in 2022. Deep-learning software automatically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Skeletal radiology 2024-11
Hauptverfasser: Park, Jina, Kim, Youngjune, Hong, Sehyun, Chee, Choong Guen, Lee, Eugene, Lee, Joon Woo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To determine an optimal region of interest (ROI) for opportunistic screening of osteoporosis in terms of short-term in vivo diagnostic precision. We included patients who underwent two CT scans and one dual-energy X-ray absorptiometry scan within a month in 2022. Deep-learning software automatically measured the attenuation in L1 using 54 ROIs (three slice thicknesses × six shapes × three intravertebral levels). To identify factors associated with a lower attenuation difference between the two CT scans, mixed-effect model analysis was performed with ROI-level (slice thickness, shape, intravertebral levels) and patient-level (age, sex, patient diameter, change in CT machine) factors. The root-mean-square standard deviation (RMSSD) and area under the receiver-operating-characteristic curve (AUROC) were calculated. In total, 73 consecutive patients (mean age ± standard deviation, 69 ± 9 years, 38 women) were included. A lower attenuation difference was observed in ROIs in images with slice thicknesses of 1 and 3 mm than that in images with a slice thickness of 5 mm (p 
ISSN:0364-2348
1432-2161
1432-2161
DOI:10.1007/s00256-024-04818-w