Ultrasound/magnetic resonance bimodal imaging-guided CD20-targeted multifunctional nanoplatform for photothermal/chemo synergistic therapy of B-cell lymphoma

B-cell lymphoma has a poor prognosis due to difficulties in early diagnosis and the negative effects of systemic chemotherapy. Therefore, there is an urgent need to develop highly accurate and effective theranostic strategies for B-cell lymphoma. In this study, we designed a poly (lactic-co-glycolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical sciences 2024-11
Hauptverfasser: Wang, Zhengji, Huang, Jian, Lv, Weiyang, Huang, Chunxin, Wang, Ying, Li, Xing, Liu, Huilin, Hao, Liguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:B-cell lymphoma has a poor prognosis due to difficulties in early diagnosis and the negative effects of systemic chemotherapy. Therefore, there is an urgent need to develop highly accurate and effective theranostic strategies for B-cell lymphoma. In this study, we designed a poly (lactic-co-glycolic acid) (PLGA)-based theranostic nanoplatform (denoted as TscNPs) to achieve ultrasound (US)/magnetic resonance (MR) bimodal imaging-guided photothermal (PTT)/chemo synergistic therapy of B-cell lymphoma. The nanoplatform was conjugated with a CD20 monoclonal antibody specifically targeting B-cell lymphoma to promote tumor accumulation. Encapsulated superparamagnetic iron oxide nanoparticles (SPIONs) as photothermal and MR imaging agents enabled thermal ablation of tumors and imaging-guided tumor therapy. When exposed to near-infrared (NIR) laser, TscNPs generate heat that induces optical droplet vaporization (ODV) of perfluoropentane (PFP), which transforms into microbubbles. This process not only enhanced ultrasound imaging, but also facilitated the release of celastrol (CST) from the nanoplatform, ultimately achieving a PTT/chemo synergistic therapy effect. In the tumor-bearing nude mice model, TscNPs were effectively accumulated in the tumor region. Furthermore, the combined treatment mode of TscNPs and NIR laser irradiation demonstrated a tumor inhibition rate of approximately 96.57 %, which was significantly superior to the rates observed with PTT or chemotherapy alone. These results suggest that the multifunctional theranostic nanoplatform represents a promising new strategy for the therapy of B-cell lymphoma.
ISSN:0022-3549
1520-6017
1520-6017
DOI:10.1016/j.xphs.2024.11.004