Synthesis of Iron(IV) Alkynylide Complexes and Their Reactivity to Form 1,3-Diynes

The isolation of thermally unstable and highly reactive organoiron(IV) complexes is a challenge for synthetic chemists. In particular, the number of examples where the C-based ligand is not part of the chelating ligand remains scarce. These compounds are of interest because they could pave the way t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-12, p.e202421222
Hauptverfasser: Souilah, Charafa, Jannuzzi, Sergio A V, Becker, Felix J, Demirbas, Derya, Jenisch, Daniel, Ivlev, Sergei, Xie, Xiulan, Peredkov, Sergey, Lichtenberg, Crispin, DeBeer, Serena, Casitas, Alicia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The isolation of thermally unstable and highly reactive organoiron(IV) complexes is a challenge for synthetic chemists. In particular, the number of examples where the C-based ligand is not part of the chelating ligand remains scarce. These compounds are of interest because they could pave the way to designing catalytic cycles of bond forming reactions proceeding via organoiron(IV) intermediates. Herein, we report the synthesis and characterization, including single-crystal X-ray diffraction, of a family of alkynylferrates(III) and Fe(IV) alkynylide complexes. The alkynylferrates(III) are formed by transmetalation of the Fe(III) precursor [(N N')Fe ] (N N' is tris(N-tert-butyldimethylsilyl-2-amidoethyl)amine) with lithium alkynylides, and their further one-electron oxidation enables the synthesis of the corresponding Fe(IV) alkynylides. The electronic structure of this family of organometallic Fe(III) and Fe(IV) complexes has been thoroughly investigated by spectroscopic methods (EPR, NMR, Fe Mössbauer, X-Ray absorption (XAS) and emission (XES) spectroscopies) and theoretical calculations. While alkynylferrates(III) are sluggish to engage into C-C bond forming processes, the Fe(IV) alkynylides react to afford 1,3-diynes at room temperature. A bimolecular reductive elimination from a bimetallic Fe(IV) intermediate to form the 1,3-diynes is proposed based on the mechanistic investigations performed.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202421222