Space-time interference: The asymmetry we get out is the asymmetry we put in

Temporal judgments are more affected by space than vice versa. This asymmetry has often been interpreted as primacy of spatial representations over temporal ones. This interpretation is in line with conceptual metaphor theory that humans conceptualize time by spatial metaphors, but is inconsistent w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience and biobehavioral reviews 2024-12, Vol.167, p.105941, Article 105941
Hauptverfasser: Riemer, Martin, Cai, Zhenguang G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temporal judgments are more affected by space than vice versa. This asymmetry has often been interpreted as primacy of spatial representations over temporal ones. This interpretation is in line with conceptual metaphor theory that humans conceptualize time by spatial metaphors, but is inconsistent with the assumption of a common neuronal magnitude system. Here we review the accumulating evidence for a genuinely symmetric interference between time and space and discuss potential explanations as to why asymmetric interference can arise, both with respect to the interaction between spatial size and temporal duration, and the interaction between traveled distance and travel time. Contrary to the view of hierarchical representations of time and space, our review suggests that asymmetric interference can be explained on the basis of working memory processes and the aspect of speed inherent in dynamic stimuli. We conclude that the asymmetry we often get out (space affects time more than vice versa) is a consequence of the asymmetry we put in (by using biased paradigms and stimuli facilitating spatial processing). •Space and time are symmetrically represented in the brain.•Metaphors in language are unrelated to the basic perception of space and time.•Cross-dimensional interference is based on working memory processes.•Speed explains an asymmetric interference between traveled distance and travel time.
ISSN:0149-7634
1873-7528
1873-7528
DOI:10.1016/j.neubiorev.2024.105941