STC-1 alleviates airway inflammation by regulating epithelial cell apoptosis through the 5-LO pathway
Airway inflammation plays a key role in the pathogenesis and development of asthma. Stanniocalcin-1 (STC-1) has powerful antioxidant, anti-inflammatory and anti-apoptotic functions but its impact on the airway inflammation in asthma lacks evidence. Here, we investigated the effect and potential mech...
Gespeichert in:
Veröffentlicht in: | Inflammation 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Airway inflammation plays a key role in the pathogenesis and development of asthma. Stanniocalcin-1 (STC-1) has powerful antioxidant, anti-inflammatory and anti-apoptotic functions but its impact on the airway inflammation in asthma lacks evidence. Here, we investigated the effect and potential mechanism of STC-1 on airway inflammation through asthmatic mice model and lipopolysaccharide (LPS)-treated BEAS-2B cells. The data showed that STC-1 treatment before the challenge exerted protective effect on ovalbumin (OVA)-induced asthmatic mice, i.e., decreased the inflammatory cell infiltration, mucus secretion, cytokine levels, apoptosis levels, and p38 MAPK signaling. Additionally, STC-1 reduced 5-LO expression. Meanwhile, STC-1 decreased p38 MAPK signaling, cytokine production, mucin MUC5AC production, 5-LO expression and nuclear translocation, and LTB4 production in vitro. Ultimately, transforming growth factor
(TGF-
), as a 5-LO inducer, reversed the anti-inflammatory and anti-apoptotic effects of STC-1 in BEAS-2B cells by up-regulating 5-LO expression. It reveals the potential of STC-1 to act as an additional therapy to mitigate airway inflammation in asthma and inhibit 5-LO expression. |
---|---|
ISSN: | 0360-3997 1573-2576 1573-2576 |
DOI: | 10.1007/s10753-024-02181-5 |