Interfacially Assembled Anion Exchange Membranes for Water Electrolysis

High-performance and durable anion exchange membranes (AEMs) are critical for realizing economical green hydrogen production through alkaline water electrolysis (AWE) or AEM water electrosysis (AEMWE). However, existing AEMs require sophisticated fabrication protocols and exhibit unsatisfactory elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-11, Vol.18 (47), p.32694-32704
Hauptverfasser: Kim, Hansoo, Jeon, Sungkwon, Choi, Juyeon, Park, Young Sang, Park, Sung-Joon, Lee, Myung-Seok, Nam, Yujin, Park, Hosik, Kim, MinJoong, Lee, Changsoo, An, Si Eon, Jung, Jiyoon, Kim, SeungHwan, Kim, Jeong F., Cho, Hyun-Seok, Lee, Albert S., Lee, Jung-Hyun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-performance and durable anion exchange membranes (AEMs) are critical for realizing economical green hydrogen production through alkaline water electrolysis (AWE) or AEM water electrosysis (AEMWE). However, existing AEMs require sophisticated fabrication protocols and exhibit unsatisfactory electrochemical performance and long-term durability. Here we report an AEM fabricated via a one-pot, in situ interfacial Menshutkin reaction, which assembles a highly cross-linked polymer containing high-density quaternary ammoniums and nanovoids inside a reinforcing porous support. This structure endows the membrane with high anion-conducting ability, water uptake (but low swelling), and mechanical and thermochemical robustness. Consequently, the assembled membrane achieves excellent AWE (0.97 A cm–2 at 1.8 V) and AEMWE (5.23 A cm–2 at 1.8 V) performance at 5 wt % KOH and 80 °C, significantly exceeding that of commercial and previously developed membranes, and excellent long-term durability. Our approach provides an effective method for fabricating AEMs for various energy and environmental applications.
ISSN:1936-0851
1936-086X
1936-086X
DOI:10.1021/acsnano.4c10212