Echinochrome A inhibits HMGB1-induced vascular smooth muscle cell migration by suppressing osteopontin expression

Echinochrome A (Ech A) isolated from marine organisms is a therapeutic effector for various cardiovascular diseases, but its precise mechanisms are unclear. This study identified the role and mechanisms mediating the effects of Ech A on the migration of vascular smooth muscle cells (VSMCs) induced b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Korean journal of physiology & pharmacology 2024-11
Hauptverfasser: Kim, Ju Yeon, Bae, Hee Eun, Bae, Sun Sik, Sung, Hyun, Kim, Chi Dae
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Echinochrome A (Ech A) isolated from marine organisms is a therapeutic effector for various cardiovascular diseases, but its precise mechanisms are unclear. This study identified the role and mechanisms mediating the effects of Ech A on the migration of vascular smooth muscle cells (VSMCs) induced by high-mobility group box 1 (HMGB1). Compared to the control cells, the migration of VSMCs stimulated with HMGB1 (100 ng/ml) was markedly increased, which was significantly attenuated in cells pretreated with MPIIIB10 (100 ng/ml), a neutralizing monoclonal antibody for osteopontin (OPN). In VSMCs stimulated with HMGB1, the increased expression of OPN mRNA and protein was accompanied by an increased OPN promoter activity. In reporter gene assays using OPN promoter-luciferase constructs, the promoter region 538-234 bp of the transcription start site containing the binding sites for activator protein 1 (AP-1) was shown to be responsible for the increased transcriptional activity by HMGB1. In addition, the binding activity of AP-1 was increased in HMGB1-stimulated cells, highlighting the pivotal role of AP-1 on OPN expression in HMGB1-stimulated VSMCs. An examination of the vascular effects of Ech A showed that the increased AP-1 binding/promoter activities and OPN expression induced by HMGB1 were attenuated in cells pretreated with Ech A (3 or 10 μM). Similarly, Ech A inhibited HMGB1-induced VSMC migration in a concentration-dependent manner. These findings suggest that Ech A inhibits VSMC migration by suppressing OPN expression. Hence, Ech A is suggested as a potential therapeutic strategy for vascular remodeling in the injured vasculatures.
ISSN:1226-4512
2093-3827
DOI:10.4196/kjpp.24.220