Self‐Diffusion Effect Assisted TiO2/Li3PO4 Electron Selective Passivating Contact in Silicon Solar Cells Approaching 23% Efficiency

Carrier selective contacts with passivation effects are considered to have a significant influence on the performance of crystalline silicon (c‐Si) solar cells. It is essential for electron selective contact materials to meet the requirements of ultra‐low contact resistance and excellent passivation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2025-01, Vol.21 (2), p.e2407398-n/a
Hauptverfasser: Xu, Zhiyuan, Yan, Yu, Li, Wei, Gao, Qianfeng, Song, Yaya, Zhang, Maobin, Xue, Junming, Ren, Huizhi, Xu, Shengzhi, Chen, Xinliang, Ding, Yi, Huang, Qian, Zhang, Xiaodan, Zhao, Ying, Hou, Guofu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carrier selective contacts with passivation effects are considered to have a significant influence on the performance of crystalline silicon (c‐Si) solar cells. It is essential for electron selective contact materials to meet the requirements of ultra‐low contact resistance and excellent passivation effects. This work introduces a stack layer of Lithium Phosphate (Li3PO4) /Titanium Dioxide (TiO2) as a new electron selective passivating contact. It is found that the stack achieves an impressive contact resistivity (ρc) of 0.128 mΩ cm2 on n‐type c‐Si substrates with resistivity ranging from 1 to 3 Ω cm (14.6 mΩ cm2 for the n‐Si/a‐Si:H/Li3PO4/TiO2/Al contact). Furthermore, it effectively reduces the surface recombination parameter (J0) to less than 4 fA by incorporating a 6 nm a‐Si:H(i) layer. The characterization of the n‐Si/Li3PO4/TiO2 interface reveals that phosphorus diffusion into silicon plays a crucial role in achieving the ultra‐low contact resistivity, while the presence of PO43− groups helps in fixing hydrogen atoms to maintain the desired chemical passivation effect. Finally, a silicon heterojunction solar cell (SHJ) with a rear full‐area configuration of a‐Si:H/Li3PO4/TiO2/Al is successfully demonstrated achieving an impressive power conversion efficiency of 22.89%. The result proves the efficacy of employing hydrogen‐rich low‐work function metal oxide stacks as electron selective passivating contacts. This work introduces a stack layer of Lithium Phosphate (Li3PO4) /Titanium Dioxide (TiO2) as a new electron selective passivating contact for c‐Si solar cells. The stack achieves an impressive contact resistivity (ρc) of 0.128 mΩ cm2 on n‐type c‐Si substrates with resistivity ranging from 1 to 3 Ω cm2. Furthermore, it effectively reduces the surface recombination parameter (J0) to less than 4 fA by incorporating a 6 nm a‐Si:H(i) layer.
ISSN:1613-6810
1613-6829
1613-6829
DOI:10.1002/smll.202407398