Asynchronous optical sampling of on-chip terahertz devices for real-time sensing and imaging applications

We demonstrate that asynchronous optical sampling (ASOPS) can be used to measure the propagation of terahertz (THz) bandwidth pulses in a coplanar waveguide device with integrated photoconductive switches used for signal excitation and detection. We assess the performance of the ASOPS technique as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2024-07, Vol.32 (16), p.27940
Hauptverfasser: Mosley, Connor D W, Tucker, Robyn, Nixon, Joshua P R, Park, SaeJune, Li, Lianhe, Freeman, Joshua R, Wood, Christopher D, Linfield, Edmund H, Davies, A Giles, Cunningham, John E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that asynchronous optical sampling (ASOPS) can be used to measure the propagation of terahertz (THz) bandwidth pulses in a coplanar waveguide device with integrated photoconductive switches used for signal excitation and detection. We assess the performance of the ASOPS technique as a function of measurement duration, showing the ability to acquire full THz time-domain traces at rates up to 100 Hz. We observe a peak dynamic range of 40 dB for the shortest measurement duration of 10 ms, increasing to 88 dB with a measurement time of 500 s. Our work opens a route to real-time video-rate imaging via modalities using scanned THz waveguides, as well as real-time THz sensing of small volume analytes; we benchmark our on-chip ASOPS measurements against previously published simulations of scanning THz sensor devices, demonstrating sufficient dynamic range to underpin future video-rate THz spectroscopy measurements with these devices.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.529890