Design of dinuclear osmium complex doped antifouling cellulose nanoparticles for targeting and dual photodynamic/photothermal therapy under near infrared irradiation
Transition metal complexes has been explored in the treatment of tumors in photodynamic theray (PDT) or photothermal therapy (PTT) and Osmium complex attracts attentration due to its lower toxicity and longer absorption wavelength. However, there was no report about binuclear Os complex for combined...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-12, Vol.283 (Pt 1), p.137544, Article 137544 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transition metal complexes has been explored in the treatment of tumors in photodynamic theray (PDT) or photothermal therapy (PTT) and Osmium complex attracts attentration due to its lower toxicity and longer absorption wavelength. However, there was no report about binuclear Os complex for combined therapy of PDT and PTT which could have a synergistic effect and improve the effectiveness. Herein, we synthesis of mono/dinuclear Os complexes (OsY1, OsY2) with dual PDT/PTT capabilities under a single near-infrared (NIR) excitation wavelength. These features arise from the large π-conjugated structure of our dinuclear Os complex coupled with efficient metal-to-ligand charge transfer, which bring in ultralow energy gaps of 0.733 eV and 0.308 eV for OsY1 and OsY2, respectively. Furthermore, we prepared the Osmium complex-doped, aptamer-conjugated cellulose NPs via the emulsion polymerization method. These NPs exhibit a notable ability to target mitochondria and posse a “protein corona-free” status, showing much higher efficiency in tumor ablation (76 %) than the commercialized indocyanine green (ICG) doped cellulose NPs (24 %) under 808 nm irradiation. Consequently, our designed mono/dinuclear Os complex, featuring a single-molecule dual PDT/PTT effect within doped antifouling NPs, holds promise for potential applications in cancer therapy.
We firstly synthesis of dinuclear Osmium complexes with dual PDT/PTT capabilities for efficient cancer therapy. [Display omitted]
•Synthesis of dinuclear Osmium complexes with a single NIR excitation for both PDT and PTT.•The functionalized cellulose NPs target mitochondria and posse a “protein corona-free” status.•The dinuclear Osmium complexes doped NPs exhibit efficient tumor ablation in vivo. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.137544 |