Construction of Luminescent Terpyridine-Based Metallo-Bowties with Alkyl Chain-Bridged Dimerized Building Blocks
Numerous metallo-supramolecules with well-defined sizes and shapes have been successfully constructed via the strong coordination interaction between terpyridine (TPY) moieties and ruthenium cations. However, the pseudo-octahedral geometry of unit hampers the luminescent properties of such metallo-a...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2024-11, p.e202403783 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerous metallo-supramolecules with well-defined sizes and shapes have been successfully constructed via the strong coordination interaction between terpyridine (TPY) moieties and ruthenium cations. However, the pseudo-octahedral geometry of unit hampers the luminescent properties of such metallo-architectures, thus limiting their applications as optical materials. To address this issue, we herein use a flexible alkyl chain to bridge TPY building blocks, replacing conventional linkage. The introduction of alkyl chain guides the self-assembly into desired architecture while simultaneously eliminating the quenching effects typically associated with the linkage. More importantly, this design strategy enables the precise construction of bowtie-shaped metallo-supramolecules with significantly enhanced emission. The incorporation of alkyl chain linkage not only maintains structural integrity but also enhances optical performance, making these metallo-supramolecular assemblies highly promising for applications in advanced photonic and luminescent materials. This study offers a versatile approach to construct complex metallo-supramolecular architectures with desired optical properties. |
---|---|
ISSN: | 0947-6539 1521-3765 1521-3765 |
DOI: | 10.1002/chem.202403783 |