Moisturizing and antioxidant factors of skin barrier restoring cream with shea butter, silkflo and vitamin E in human keratinocyte cells
Moisturizers are integral to daily skincare routines, reflecting the increasing trend among people towards cosmetic products, particularly for skin care. They significantly contribute to preserving skin health, particularly by regulating the epidermal barrier and moisture levels within the skin. Thi...
Gespeichert in:
Veröffentlicht in: | International journal of cosmetic science 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Moisturizers are integral to daily skincare routines, reflecting the increasing trend among people towards cosmetic products, particularly for skin care. They significantly contribute to preserving skin health, particularly by regulating the epidermal barrier and moisture levels within the skin. This study aims to explore the moisturizing and antioxidant effect of skin barrier restoring cream Moiz MM (MZ) with shea butter, silkflo and vitamin E by investigating its protective effect against oxidative stress-induced cellular damage and therapeutic mechanisms in human keratinocytes cells (HaCaT).
The in vitro antioxidant activity of MZ was evaluated by DPPH, ABTS and NO assays. For the cell culture study, HaCaT cells were cultured and stimulated using H
O
and then treated with different concentrations of MZ. Then, it was subjected to DCFH-DA staining, reverse transcriptase PCR and western blot analysis for the evaluation of various skin-moisture-related components in human keratinocyte cells. Type I procollagen was examined using ELISA technique.
The results highlighted that oxidative stress in HaCaT cells decreased type I procollagen synthesis, while MZ treatment significantly increased the synthesis. Moreover, the viability of HaCaT cells was not affected in the presence of MZ, which demonstrates its non-toxic effect. Furthermore, MZ can counteract H
O
-mediated oxidative stress by enhancing the antioxidant enzyme activity such as superoxide dismutase and catalase, and decrease reactive oxygen species generation in skin cells. Additionally, MZ greatly promotes hyaluronic acid production by enhancing the expression of the hyaluronic acid synthase-1 gene and Aquaporin 3 protein.
This study suggests that MZ has the potential to serve as a moisturizing and antioxidant skincare formula. |
---|---|
ISSN: | 0142-5463 1468-2494 1468-2494 |
DOI: | 10.1111/ics.13014 |