Understanding linear interaction analysis with causal graphs
Interaction analysis using linear regression is widely employed in psychology and related fields, yet it often induces confusion among applied researchers and students. This paper aims to address this confusion by developing intuitive visual explanations based on causal graphs. By leveraging causal...
Gespeichert in:
Veröffentlicht in: | British journal of mathematical & statistical psychology 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interaction analysis using linear regression is widely employed in psychology and related fields, yet it often induces confusion among applied researchers and students. This paper aims to address this confusion by developing intuitive visual explanations based on causal graphs. By leveraging causal graphs with distinct interaction nodes, we provide clear insights into interpreting main effects in the presence of interaction, the rationale behind centering to reduce multicollinearity, and other pertinent topics. The proposed graphical approach could serve as a useful complement to existing algebraic explanations, fostering a more comprehensive understanding of the mechanics of linear interaction analysis. |
---|---|
ISSN: | 0007-1102 2044-8317 2044-8317 |
DOI: | 10.1111/bmsp.12369 |