Predicting and Accelerating Nanomaterial Synthesis Using Machine Learning Featurization
Materials synthesis optimization is constrained by serial feedback processes that rely on manual tools and intuition across multiple siloed modes of characterization. We automate and generalize feature extraction of reflection high-energy electron diffraction (RHEED) data with machine learning to es...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-11, Vol.24 (46), p.14862-14867 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14867 |
---|---|
container_issue | 46 |
container_start_page | 14862 |
container_title | Nano letters |
container_volume | 24 |
creator | Price, Christopher C. Li, Yansong Zhou, Guanyu Younas, Rehan Zeng, Spencer S. Scanlon, Tim H. Munro, Jason M. Hinkle, Christopher L. |
description | Materials synthesis optimization is constrained by serial feedback processes that rely on manual tools and intuition across multiple siloed modes of characterization. We automate and generalize feature extraction of reflection high-energy electron diffraction (RHEED) data with machine learning to establish quantitatively predictive relationships in small sets (∼10) of expert-labeled data, saving significant time on subsequently grown samples. These predictive relationships are evaluated in a representative material system (W1–x V x Se2 on c-plane sapphire (0001)) with two aims: 1) predicting grain alignment of the deposited film using pregrowth substrate data and 2) estimating vanadium dopant concentration using in situ RHEED as a proxy for ex situ methods (e.g., X-ray photoelectron spectroscopy). Both tasks are accomplished using the same materials-agnostic features, avoiding specific system retraining and leading to a potential 80% time saving over a 100-sample synthesis campaign. These predictions provide guidance to avoid doomed trials, reduce follow-on characterization, and improve control resolution for materials synthesis. |
doi_str_mv | 10.1021/acs.nanolett.4c04500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128757676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128757676</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-3b743e9c43bc9d8816c25b66459ed5c070f7c46aeb579c76d4cab010e1fa143f3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFju04XlYVBaTykKBiGTnOhLpKnWIni_L1OPSxZDWjmXvvaA5C1wSPCU7IndJ-bJVtamjbMdOYcYxP0JBwiuNUyuT02GdsgC68X2GMJeX4HA2o5InkNBuizzcHpdGtsV-RsmU00RpqcOpv8BLi16oFZ1QdvW9tuwRvfLTw_fJZ6aWxEM1BOdsPZqDazpmf4G3sJTqrVO3hal9HaDG7_5g-xvPXh6fpZB6rJBFtTAvBKEjNaKFlmWUk1Qkv0pRxCSXXWOBKaJYqKLiQWqQl06rABAOpFGG0oiN0u8vduOa7A9_ma-PDC7Wy0HQ-pyTJBBepSIOU7aTaNd47qPKNM2vltjnBeY80D0jzA9J8jzTYbvYXumIN5dF0YBgEeCfo7aumczY8_H_mL-Smh2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128757676</pqid></control><display><type>article</type><title>Predicting and Accelerating Nanomaterial Synthesis Using Machine Learning Featurization</title><source>ACS Publications</source><creator>Price, Christopher C. ; Li, Yansong ; Zhou, Guanyu ; Younas, Rehan ; Zeng, Spencer S. ; Scanlon, Tim H. ; Munro, Jason M. ; Hinkle, Christopher L.</creator><creatorcontrib>Price, Christopher C. ; Li, Yansong ; Zhou, Guanyu ; Younas, Rehan ; Zeng, Spencer S. ; Scanlon, Tim H. ; Munro, Jason M. ; Hinkle, Christopher L.</creatorcontrib><description>Materials synthesis optimization is constrained by serial feedback processes that rely on manual tools and intuition across multiple siloed modes of characterization. We automate and generalize feature extraction of reflection high-energy electron diffraction (RHEED) data with machine learning to establish quantitatively predictive relationships in small sets (∼10) of expert-labeled data, saving significant time on subsequently grown samples. These predictive relationships are evaluated in a representative material system (W1–x V x Se2 on c-plane sapphire (0001)) with two aims: 1) predicting grain alignment of the deposited film using pregrowth substrate data and 2) estimating vanadium dopant concentration using in situ RHEED as a proxy for ex situ methods (e.g., X-ray photoelectron spectroscopy). Both tasks are accomplished using the same materials-agnostic features, avoiding specific system retraining and leading to a potential 80% time saving over a 100-sample synthesis campaign. These predictions provide guidance to avoid doomed trials, reduce follow-on characterization, and improve control resolution for materials synthesis.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c04500</identifier><identifier>PMID: 39529538</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2024-11, Vol.24 (46), p.14862-14867</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a227t-3b743e9c43bc9d8816c25b66459ed5c070f7c46aeb579c76d4cab010e1fa143f3</cites><orcidid>0000-0002-4702-5817 ; 0000-0002-5485-6600 ; 0000-0002-2291-9427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.4c04500$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c04500$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39529538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Price, Christopher C.</creatorcontrib><creatorcontrib>Li, Yansong</creatorcontrib><creatorcontrib>Zhou, Guanyu</creatorcontrib><creatorcontrib>Younas, Rehan</creatorcontrib><creatorcontrib>Zeng, Spencer S.</creatorcontrib><creatorcontrib>Scanlon, Tim H.</creatorcontrib><creatorcontrib>Munro, Jason M.</creatorcontrib><creatorcontrib>Hinkle, Christopher L.</creatorcontrib><title>Predicting and Accelerating Nanomaterial Synthesis Using Machine Learning Featurization</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Materials synthesis optimization is constrained by serial feedback processes that rely on manual tools and intuition across multiple siloed modes of characterization. We automate and generalize feature extraction of reflection high-energy electron diffraction (RHEED) data with machine learning to establish quantitatively predictive relationships in small sets (∼10) of expert-labeled data, saving significant time on subsequently grown samples. These predictive relationships are evaluated in a representative material system (W1–x V x Se2 on c-plane sapphire (0001)) with two aims: 1) predicting grain alignment of the deposited film using pregrowth substrate data and 2) estimating vanadium dopant concentration using in situ RHEED as a proxy for ex situ methods (e.g., X-ray photoelectron spectroscopy). Both tasks are accomplished using the same materials-agnostic features, avoiding specific system retraining and leading to a potential 80% time saving over a 100-sample synthesis campaign. These predictions provide guidance to avoid doomed trials, reduce follow-on characterization, and improve control resolution for materials synthesis.</description><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFju04XlYVBaTykKBiGTnOhLpKnWIni_L1OPSxZDWjmXvvaA5C1wSPCU7IndJ-bJVtamjbMdOYcYxP0JBwiuNUyuT02GdsgC68X2GMJeX4HA2o5InkNBuizzcHpdGtsV-RsmU00RpqcOpv8BLi16oFZ1QdvW9tuwRvfLTw_fJZ6aWxEM1BOdsPZqDazpmf4G3sJTqrVO3hal9HaDG7_5g-xvPXh6fpZB6rJBFtTAvBKEjNaKFlmWUk1Qkv0pRxCSXXWOBKaJYqKLiQWqQl06rABAOpFGG0oiN0u8vduOa7A9_ma-PDC7Wy0HQ-pyTJBBepSIOU7aTaNd47qPKNM2vltjnBeY80D0jzA9J8jzTYbvYXumIN5dF0YBgEeCfo7aumczY8_H_mL-Smh2g</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Price, Christopher C.</creator><creator>Li, Yansong</creator><creator>Zhou, Guanyu</creator><creator>Younas, Rehan</creator><creator>Zeng, Spencer S.</creator><creator>Scanlon, Tim H.</creator><creator>Munro, Jason M.</creator><creator>Hinkle, Christopher L.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4702-5817</orcidid><orcidid>https://orcid.org/0000-0002-5485-6600</orcidid><orcidid>https://orcid.org/0000-0002-2291-9427</orcidid></search><sort><creationdate>20241120</creationdate><title>Predicting and Accelerating Nanomaterial Synthesis Using Machine Learning Featurization</title><author>Price, Christopher C. ; Li, Yansong ; Zhou, Guanyu ; Younas, Rehan ; Zeng, Spencer S. ; Scanlon, Tim H. ; Munro, Jason M. ; Hinkle, Christopher L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-3b743e9c43bc9d8816c25b66459ed5c070f7c46aeb579c76d4cab010e1fa143f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Price, Christopher C.</creatorcontrib><creatorcontrib>Li, Yansong</creatorcontrib><creatorcontrib>Zhou, Guanyu</creatorcontrib><creatorcontrib>Younas, Rehan</creatorcontrib><creatorcontrib>Zeng, Spencer S.</creatorcontrib><creatorcontrib>Scanlon, Tim H.</creatorcontrib><creatorcontrib>Munro, Jason M.</creatorcontrib><creatorcontrib>Hinkle, Christopher L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Price, Christopher C.</au><au>Li, Yansong</au><au>Zhou, Guanyu</au><au>Younas, Rehan</au><au>Zeng, Spencer S.</au><au>Scanlon, Tim H.</au><au>Munro, Jason M.</au><au>Hinkle, Christopher L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting and Accelerating Nanomaterial Synthesis Using Machine Learning Featurization</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-11-20</date><risdate>2024</risdate><volume>24</volume><issue>46</issue><spage>14862</spage><epage>14867</epage><pages>14862-14867</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Materials synthesis optimization is constrained by serial feedback processes that rely on manual tools and intuition across multiple siloed modes of characterization. We automate and generalize feature extraction of reflection high-energy electron diffraction (RHEED) data with machine learning to establish quantitatively predictive relationships in small sets (∼10) of expert-labeled data, saving significant time on subsequently grown samples. These predictive relationships are evaluated in a representative material system (W1–x V x Se2 on c-plane sapphire (0001)) with two aims: 1) predicting grain alignment of the deposited film using pregrowth substrate data and 2) estimating vanadium dopant concentration using in situ RHEED as a proxy for ex situ methods (e.g., X-ray photoelectron spectroscopy). Both tasks are accomplished using the same materials-agnostic features, avoiding specific system retraining and leading to a potential 80% time saving over a 100-sample synthesis campaign. These predictions provide guidance to avoid doomed trials, reduce follow-on characterization, and improve control resolution for materials synthesis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39529538</pmid><doi>10.1021/acs.nanolett.4c04500</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4702-5817</orcidid><orcidid>https://orcid.org/0000-0002-5485-6600</orcidid><orcidid>https://orcid.org/0000-0002-2291-9427</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2024-11, Vol.24 (46), p.14862-14867 |
issn | 1530-6984 1530-6992 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_3128757676 |
source | ACS Publications |
title | Predicting and Accelerating Nanomaterial Synthesis Using Machine Learning Featurization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20and%20Accelerating%20Nanomaterial%20Synthesis%20Using%20Machine%20Learning%20Featurization&rft.jtitle=Nano%20letters&rft.au=Price,%20Christopher%20C.&rft.date=2024-11-20&rft.volume=24&rft.issue=46&rft.spage=14862&rft.epage=14867&rft.pages=14862-14867&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c04500&rft_dat=%3Cproquest_cross%3E3128757676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128757676&rft_id=info:pmid/39529538&rfr_iscdi=true |