Predicting and Accelerating Nanomaterial Synthesis Using Machine Learning Featurization

Materials synthesis optimization is constrained by serial feedback processes that rely on manual tools and intuition across multiple siloed modes of characterization. We automate and generalize feature extraction of reflection high-energy electron diffraction (RHEED) data with machine learning to es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-11, Vol.24 (46), p.14862-14867
Hauptverfasser: Price, Christopher C., Li, Yansong, Zhou, Guanyu, Younas, Rehan, Zeng, Spencer S., Scanlon, Tim H., Munro, Jason M., Hinkle, Christopher L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Materials synthesis optimization is constrained by serial feedback processes that rely on manual tools and intuition across multiple siloed modes of characterization. We automate and generalize feature extraction of reflection high-energy electron diffraction (RHEED) data with machine learning to establish quantitatively predictive relationships in small sets (∼10) of expert-labeled data, saving significant time on subsequently grown samples. These predictive relationships are evaluated in a representative material system (W1–x V x Se2 on c-plane sapphire (0001)) with two aims: 1) predicting grain alignment of the deposited film using pregrowth substrate data and 2) estimating vanadium dopant concentration using in situ RHEED as a proxy for ex situ methods (e.g., X-ray photoelectron spectroscopy). Both tasks are accomplished using the same materials-agnostic features, avoiding specific system retraining and leading to a potential 80% time saving over a 100-sample synthesis campaign. These predictions provide guidance to avoid doomed trials, reduce follow-on characterization, and improve control resolution for materials synthesis.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.4c04500