Slicing Network for Wide-Field Fluorescence Image Based on the Improved U-Net Model
Fluorescence imaging stands as a pivotal component in biomedical research, requiring the elimination of out-of-focus background noise resulting from wide-field volumetric illumination of the whole field-of-view and scattering within thick biological tissues. Traditional methods struggle to effective...
Gespeichert in:
Veröffentlicht in: | Microscopy research and technique 2024-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fluorescence imaging stands as a pivotal component in biomedical research, requiring the elimination of out-of-focus background noise resulting from wide-field volumetric illumination of the whole field-of-view and scattering within thick biological tissues. Traditional methods struggle to effectively address varying degrees of defocusing in fluorescence images. This study introduces the utilization of upU-Net, 3D U-Net, and 3D upU-Net as defocusing networks tailored for 2D and 3D wide-field fluorescence images, yielding notable enhancements. These advancements facilitate more economically viable confocal microscopy, delivering significant advantages to biologists presently utilizing wide-field fluorescence microscopy. |
---|---|
ISSN: | 1059-910X 1097-0029 1097-0029 |
DOI: | 10.1002/jemt.24732 |