Structural plasticity of arrestin-G protein coupled receptor complexes as a molecular determinant of signaling

G protein coupled receptors (GPCRs) are critically regulated by arrestins. In this study, high-resolution data was combined with molecular dynamics simulations to infer the determinants of β-arrestin 1 (βarr1)-GPCR coupling, using the V2 vasopressin receptor (V2R) as a model system. The study highli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-12, Vol.283 (Pt 1), p.137217, Article 137217
Hauptverfasser: Felline, Angelo, Bellucci, Luca, Vezzi, Vanessa, Ambrosio, Caterina, Cotecchia, Susanna, Fanelli, Francesca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:G protein coupled receptors (GPCRs) are critically regulated by arrestins. In this study, high-resolution data was combined with molecular dynamics simulations to infer the determinants of β-arrestin 1 (βarr1)-GPCR coupling, using the V2 vasopressin receptor (V2R) as a model system. The study highlighted the extremely high plasticity of βarr1-GPCR complexes, dependent on receptor type, state, and membrane environment. The multiple functions of receptor-bound βarr1 are likely determined by the interplay of intrinsic flexibility and collective motions both as a bi-domain protein and as a whole. The two major collective motions of the whole βarr1, consisting in rotation parallel to the membrane plane and inclination with respect to the receptor main axis, are distinctly linked to the two intermolecular interfaces involved in tail and core interactions. The intermolecular dynamic coupling between βarr1 and V2R depends on the allosteric effect of the agonist arginine-vasopressin (AVP). In the absence of AVP the dynamic coupling concerns only tail interactions, while in the presence of AVP it involves both tail and core interactions. This suggests that constitutive and agonist-induced arrestin-receptor dynamic coupling is linked to distinct arrestin functions.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.137217