Phytosterols as inhibitors of New Delhi metallo-β-lactamase (NDM-1): an in silico study
The global emergence of New Delhi metallo-β-lactamase-1 (NDM-1) poses a formidable challenge to antibiotic therapy, as it confers resistance to a wide range of β-lactam antibiotics. This study aims to identify potential inhibitors of NDM-1 and thereby restore the effectiveness of the current antibio...
Gespeichert in:
Veröffentlicht in: | Molecular diversity 2024-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The global emergence of New Delhi metallo-β-lactamase-1 (NDM-1) poses a formidable challenge to antibiotic therapy, as it confers resistance to a wide range of β-lactam antibiotics. This study aims to identify potential inhibitors of NDM-1 and thereby restore the effectiveness of the current antibiotics. Employing a comprehensive computational approach integrating molecular docking and molecular dynamics (MD) simulations, a library of phytosterols was screened to identify promising candidates for inhibiting NDM-1 activity. Using the binding energy of meropenem, a frontline carbapenem antibiotic, as a reference, avenasterol, brassicasterol, and stigmasterol emerged as top phytosterol candidates for further investigation. Subsequent MD simulations confirmed the stability of NDM-1 complexes with avenasterol and stigmasterol over the simulation period, indicating their potential efficacy. These findings suggest that avenasterol and stigmasterol may effectively inhibit NDM-1 activity, warranting validation through in vitro and in vivo studies. Furthermore, these phytosterols hold promise as lead compounds for developing novel NDM-1 inhibitors. Their natural origin and potential inhibitory activity against NDM-1 offer compelling avenues for developing alternative antibacterial therapies to combat multidrug-resistant infections. This study underscores the utility of computational methods in drug discovery and highlights the potential of phytosterols as valuable candidates for addressing antibiotic resistance. |
---|---|
ISSN: | 1381-1991 1573-501X 1573-501X |
DOI: | 10.1007/s11030-024-11020-6 |