Effects of catholyte aging on high-nickel NMC cathodes in sulfide all-solid-state batteries
Sulfide solid-state electrolytes (SSEs) in all-solid-state batteries (SSBs) are recognized for their high ionic conductivity and inherent safety. The LiNi Mn Co O (NMC811) cathode offers a high thermodynamic potential of approximately 3.8 V Li/Li and a theoretical specific capacity of 200 mA h g . H...
Gespeichert in:
Veröffentlicht in: | Materials horizons 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sulfide solid-state electrolytes (SSEs) in all-solid-state batteries (SSBs) are recognized for their high ionic conductivity and inherent safety. The LiNi
Mn
Co
O
(NMC811) cathode offers a high thermodynamic potential of approximately 3.8 V
Li/Li
and a theoretical specific capacity of 200 mA h g
. However, the practical utilization of NMC811 in sulfide SSBs faces significant interfacial challenges. The oxidation instability of sulfide solid electrolytes against NMC811 and the formation of the cathode electrolyte interphase (CEI) during cycling lead to degradation and reduced cell performance. Volumetric changes in NMC during lithiation and de-lithiation can also cause detachment from sulfide electrolytes or internal particle cracking. Despite extensive galvanostatic cycling studies to address the issues, the calendar life of sulfide SSBs remains poorly understood. Here, we systematically studied the effects of four different catholytes on the calendar aging of LiNbO
(LNO)-coated NMC811, including Li
PS
Cl (LPSCl), Li
InCl
-Li
PS
Cl (LIC-LPSCl), Li
YCl
-Li
PS
Cl (LYC-LPSCl), and Li
GeP
S
(LGPS). Our results indicate that LPSCl provides optimal capacity retention when stored at high state-of-charge (SOC) at room temperature, but the LIC-LPSCl cathode shows significant capacity degradation and chemical incompatibility. We also established an effective electrochemical calendar aging testing protocol to simulate daily usage, enabling quick inference of the calendar life of SSBs. This new testing approach accelerates materials selection strategies for high-nickel NMC composite cathodes in sulfide SSBs. |
---|---|
ISSN: | 2051-6347 2051-6355 2051-6355 |
DOI: | 10.1039/d4mh01211a |