Ultra low-cost defect protection for microprocessor pipelines

The sustained push toward smaller and smaller technology sizes has reached a point where device reliability has moved to the forefront of concerns for next-generation designs. Silicon failure mechanisms, such as transistor wearout and manufacturing defects, are a growing challenge that threatens the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shyam, Smitha, Constantinides, Kypros, Phadke, Sujay, Bertacco, Valeria, Austin, Todd
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sustained push toward smaller and smaller technology sizes has reached a point where device reliability has moved to the forefront of concerns for next-generation designs. Silicon failure mechanisms, such as transistor wearout and manufacturing defects, are a growing challenge that threatens the yield and product lifetime of future systems. In this paper we introduce the BulletProof pipeline, the first ultra low-cost mechanism to protect a microprocessor pipeline and on-chip memory system from silicon defects. To achieve this goal we combine area-frugal on-line testing techniques and system-level checkpointing to provide the same guarantees of reliability found in traditional solutions, but at much lower cost. Our approach utilizes a microarchitectural checkpointing mechanism which creates coarse-grained epochs of execution, during which distributed on-line built in self-test (BIST) mechanisms validate the integrity of the underlying hardware. In case a failure is detected, we rely on the natural redundancy of instructionlevel parallel processors to repair the system so that it can still operate in a degraded performance mode. Using detailed circuit-level and architectural simulation, we find that our approach provides very high coverage of silicon defects (89%) with little area cost (5.8%). In addition, when a defect occurs, the subsequent degraded mode of operation was found to have only moderate performance impacts, (from 4% to 18% slowdown).
ISSN:0362-1340
DOI:10.1145/1168857.1168868