Human immune organoids to decode B cell response in healthy donors and patients with lymphoma
Antibodies are produced when naive B cells differentiate into plasma cells within germinal centres (GCs) of lymphoid tissues. Patients with B cell lymphoma on effective immunotherapies exhibit diminished antibody production, leading to higher infection rates and reduced vaccine efficacy, even after...
Gespeichert in:
Veröffentlicht in: | Nature materials 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antibodies are produced when naive B cells differentiate into plasma cells within germinal centres (GCs) of lymphoid tissues. Patients with B cell lymphoma on effective immunotherapies exhibit diminished antibody production, leading to higher infection rates and reduced vaccine efficacy, even after B cell recovery. Current ex vivo models fail to sustain long-term GC reactions and effectively test B cell responses. Here we developed synthetic hydrogels mimicking the lymphoid tissue microenvironment, enabling human GCs from tonsils and peripheral blood mononuclear cell-derived B cells. Immune organoids derived from peripheral blood mononuclear cells maintain GC B cells and plasma cells longer than tonsil-derived ones and exhibit unique B cell programming, including GC compartments, somatic hypermutation, immunoglobulin class switching and B cell clones. Chemical inhibition of transcriptional and epigenetic processes enhances plasma cell formation. While integrating polarized CXCL12 protein in a lymphoid organ-on-chip modulates GC responses in healthy donor B cells, it fails with B cells derived from patients with lymphoma. Our system allows rapid, controlled modelling of immune responses and B cell disorders. |
---|---|
ISSN: | 1476-1122 1476-4660 1476-4660 |
DOI: | 10.1038/s41563-024-02037-1 |