Breaking Mass Transport Limit for Hydrogen Evolution-Inhibited and Dendrite-Free Aqueous Zn Batteries

It is commonly accepted that batteries perform better at low current densities below the mass-transport limit, which restricts their current rate and capacity. Here, it is demonstrated that the performance of Zn metal electrodes can be dramatically enhanced at current densities and cut-off capacitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-11, p.e2410244
Hauptverfasser: Zhang, Jingmin, Cao, Leo N Y, Li, Rongrong, Yang, Jun, Li, Longwei, Yang, Kai, Wang, Zhong Lin, Pu, Xiong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is commonly accepted that batteries perform better at low current densities below the mass-transport limit, which restricts their current rate and capacity. Here, it is demonstrated that the performance of Zn metal electrodes can be dramatically enhanced at current densities and cut-off capacities exceeding the mass-transport limit by using pulsed-current protocols. These protocols achieve cumulative plating/stripping capacities of 11.0 Ah cm and 3.8 Ah cm at record-high current densities of 80 and 160 mA cm , respectively. The study identifies and understands the promoted (002)-textured Zn growth and suppressed hydrogen evolution based on the thermodynamics and kinetics of competing reactions. Furthermore, the over-limiting pulsed-current protocol enables long-life Zn batteries with high mass loading (29 mg cm ) and high areal capacity (7.9 mAh cm ), outperforming cells using constant-current protocols at equivalent energy and time costs. The work provides a comprehensive understanding of the current-capacity-performance relationship in Zn plating/stripping and offers an effective strategy for dendrite-free metal batteries that meet practical requirements for high capacity and high current rates.
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202410244