Nanofibrous membrane/thermoresponsive hydrogel composites with temperature-controlled capability for enhancing infected wounds healing

[Display omitted] As a novel treatment, photothermal therapy (PTT) has been widely employed to deal with bacterial infection. Nevertheless, the high temperature in conventional PTT unavoidably results in damages to normal tissues. Herein, a nanofibrous membrane/thermoresponsive hydrogel composites (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2025-02, Vol.680 (Pt A), p.172-180
Hauptverfasser: Chen, Yu, Gu, Boqi, Hao, Xiaodi, Lu, Zhentan, Wang, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] As a novel treatment, photothermal therapy (PTT) has been widely employed to deal with bacterial infection. Nevertheless, the high temperature in conventional PTT unavoidably results in damages to normal tissues. Herein, a nanofibrous membrane/thermoresponsive hydrogel composites (PB NCs@PLA/P(NIPAM-AM) hydrogels) with the ability to regulate heat generation are developed for the treatment of infected wound. Under NIR light laser irradiation, a large amount of heat generated by PB NCs@PLA nanofibrous membrane can be transferred to thermoresponsive P(NIPAM-AM) hydrogel. After reaching a lower critical solution temperature, P(NIPAM-AM) hydrogel rapidly undergoes phase transformation and generate considerable light-scattering centers to prevent NIR penetration. Through this dynamic and reversible process, temperature of PB NCs@PLA/P(NIPAM-AM) hydrogels can maintain at the predefined level to avoid overheating at the wound site. The PB NCs@PLA/P(NIPAM-AM) hydrogels not only exhibit excellent antibacterial effect, but also effectively protect normal tissues from damage, which improve the rate of wound closure. Therefore, the PB NCs@PLA/P(NIPAM-AM) hydrogels provide a promising alternative for infected wound healing.
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2024.10.170