ER Oxidoreductin 1-Like Activity of Cyclic Diselenides Drives Protein Disulfide Isomerase in an Electron Relay System

Disulfide formation generally involves a two-electron oxidation reaction between cysteine residues. Additionally, disulfide formation is an essential post-translational modification for the structural maturation of proteins. This oxidative folding is precisely controlled by an electron relay network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2024-11, p.e202400739
Hauptverfasser: Mikami, Rumi, Nishizawa, Yuya, Iwata, Yuki, Kanemura, Shingo, Okumura, Masaki, Arai, Kenta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Disulfide formation generally involves a two-electron oxidation reaction between cysteine residues. Additionally, disulfide formation is an essential post-translational modification for the structural maturation of proteins. This oxidative folding is precisely controlled by an electron relay network constructed by protein disulfide isomerase (PDI), with a CGHC sequence as the redox-active site, and its family enzymes. Creating reagents that mimic the functions of these enzymes facilitates folding during chemical protein synthesis. In this study, we aimed to imitate a biological electron relay system using cyclic diselenide compounds as surrogates for endoplasmic reticulum oxidoreductin 1 (Ero1), which is responsible for the re-oxidation of PDI. Oxidized PDI (PDI ) introduces disulfide bonds into substrate proteins, resulting in its conversion to reduced PDI (PDI ). The PDI is then re-oxidized to PDI by a coexisting cyclic diselenide compound, thereby restoring the function of PDI as a disulfide-forming agent. The produced diselenol state is readily oxidized to the original diselenide state with molecular oxygen, continuously sustaining the PDI catalytic cycle. This artificial electron relay system regulating enzymatic PDI function effectively promotes the oxidative folding of disulfide-containing proteins, such as insulin - a hypoglycemic formulation - by enhancing both yield and reaction velocity.
ISSN:1439-4227
1439-7633
1439-7633
DOI:10.1002/cbic.202400739