Estimating the effect of biological nitrification inhibition-enabled sorghum on nitrogen fertilizer consumption, life cycle GHG emissions, farmer's benefit and fertilizer subsidy from Indian sorghum production
Biological nitrification inhibition (BNI) effectively curtails nitrogen (N) loss and enhances N utilization efficiency. BNI is increasingly important as a technology for mitigating greenhouse gas emissions and water pollution in countries with high N fertilizer consumption. This study aimed to evalu...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2024-12, Vol.957, p.177385, Article 177385 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biological nitrification inhibition (BNI) effectively curtails nitrogen (N) loss and enhances N utilization efficiency. BNI is increasingly important as a technology for mitigating greenhouse gas emissions and water pollution in countries with high N fertilizer consumption. This study aimed to evaluate the potential impacts of BNI-enabled sorghum varieties with a 30 % soil nitrification inhibition rate for a major sorghum-growing state (Maharashtra, India). We analysed the farm survey data collected for Rabi sorghum in 2020–2021 (n = 250) and for Kharif sorghum in 2022 (n = 209). Life cycle greenhouse gas (LC-GHG) emissions were estimated using a life cycle assessment with a cradle-to-farm gate perspective. The results showed that adoption of BNI-enabled sorghum reduced N fertilizer application in the Rabi and Kharif seasons by 8.0 % and 7.4 % and area-scaled/yield-scaled LC-GHG emissions by 15.6 % and 11.2 %, respectively, while increasing farmers' benefits slightly. These changes could reduce the government's expenditure on urea fertilizer subsidies by 9.1 %. However, many farmers indicated that they would not change N fertilizer application even if the yield per N fertilizer application increased. Even under these circumstances, area-scaled/yield-scaled LC-GHG emissions will be decreased by 11.3 % and 13.5 % in the Rabi season and 8.1 % and 10.2 % in the Kharif season, respectively. The yield and farmers' benefit will increase by 2.5 % and 4.9 % in the Rabi season and by 2.4 % and 6.5 % in the Kharif season, respectively, but the government's expenditure on fertilizer will not decrease. These results indicate that BNI-enabled sorghum can be introduced into countries where fertilizer use is low. This study shows the potential impacts of BNI-enabled sorghum under two scenarios; N fertilizer consumption is reduced or maintained. Discussions on the N fertilizer consumption under BNI-enabled sorghum are needed to establish a sustainable food system, especially in countries with high N fertilizer consumption.
[Display omitted]
•Biological nitrification inhibition enabled sorghum (BNIS) cultivar slows nitrifier activity.•BNIS reduces nitrogen (N) loss and improves nitrogen use efficiency.•BNIS can be used in two ways: reduce or maintain N fertilizer consumption.•They reduce GHG emissions and improve farmers' benefits at different levels.•Government needs to discuss dissemination ways before introducing BNIS to farmers. |
---|---|
ISSN: | 0048-9697 1879-1026 1879-1026 |
DOI: | 10.1016/j.scitotenv.2024.177385 |