A dual-mode sensing platform for electron spin resonance and UV-vis detection of alkaline phosphatase based on Cu-based metal-organic frameworks

Alkaline phosphatase (ALP) is an indispensable hydrolase in living organisms and the abnormality of ALP activity is correlated with a variety of diseases. Exploring ALP activity is important for clinical diagnosis and biomedical research to understand its physiological function. In this study, a dua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical methods 2024-01, Vol.16 (47), p.8242-8249
Hauptverfasser: Shi, Hui, Liu, Yuntong, Qiu, Chu, Wang, Chunyu, Zhang, Zhimin, Lu, Meijun, Wang, Bo, Tian, Yuan, Song, Daqian, Zhang, Ziwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alkaline phosphatase (ALP) is an indispensable hydrolase in living organisms and the abnormality of ALP activity is correlated with a variety of diseases. Exploring ALP activity is important for clinical diagnosis and biomedical research to understand its physiological function. In this study, a dual-mode biosensing platform was constructed based on Cu-based metal-organic frameworks (Cu-MOFs) for electron spin resonance (ESR) and ultraviolet-visible (UV-vis) sensing of ALP. Cu-MOFs, as peroxidase mimics, catalyzed the decomposition of hydrogen peroxide (H O ) and the generation of reactive oxygen species (ROS) which could oxidize ABTS into ABTS˙ with good ESR and UV-vis signals. Pyrophosphate ions (PPi) with high affinity to Cu in Cu-MOFs could suppress the peroxidase-like activity of Cu-MOFs, and ALP could hydrolyze PPi, resulting in the recovery of Cu-MOF catalytic activity. Thus, a quantitative dual-mode method for detection of ALP activity was established with good linearity in the range of 0-42 U L and limits of detection as low as 0.386 and 0.523 U L respectively for ESR and UV-vis detection. Benefiting from its high sensitivity and excellent selectivity, this method was applied for ALP detection in human serum and satisfactory recoveries were achieved. The off-on dual-mode sensing platform is more reliable than the single-mode sensor and shows merits like simple operation and cost-friendliness, making it have great potential in the diagnosis of ALP-related diseases.
ISSN:1759-9660
1759-9679
1759-9679
DOI:10.1039/d4ay01682c