Asymmetric Alkyl Chain Engineering for Efficient and Eco-Friendly Organic Photovoltaic Cells
Recent advancements in organic photovoltaic (OPV) cells have resulted in power conversion efficiencies (PCEs) surpassing 20%. However, the use of halogen solvents in the fabrication of OPV cells raises concerns due to their potential environmental and health impacts. In this work, a novel non-fuller...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, p.e2408308 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent advancements in organic photovoltaic (OPV) cells have resulted in power conversion efficiencies (PCEs) surpassing 20%. However, the use of halogen solvents in the fabrication of OPV cells raises concerns due to their potential environmental and health impacts. In this work, a novel non-fullerene small molecule acceptor BO-AM-4F, featuring an asymmetric alkyl chain design that includes a 2-butyloctyl and a unique 6-(hexylamino)-6-oxohexyl chain is synthesized. This design significantly improves molecular packing, crystallinity, and electrostatic potential distribution compared to the controlled acceptor DBO-4F, which possesses symmetric 2-butyloctyl chains. When combined with the polymer donor PBDB-TF and processed using the non-halogen solvent o-xylene, the BO-AM-4F-based OPV cell achieves an impressive PCE of 18.0%, surpassing the 16.6% PCE observed in the PBDB-TF:DBO-4F device. Furthermore, the PBDB-TF:BO-AM-4F system demonstrates enhanced photostability and thermal stability compared to its DBO-4F counterpart. These findings emphasize asymmetric alkyl chain engineering as an effective strategy for developing high-performance, environmentally friendly OPV materials. This represents a significant step towards sustainable OPV technology. |
---|---|
ISSN: | 1613-6810 1613-6829 1613-6829 |
DOI: | 10.1002/smll.202408308 |