Optimization of three-dimensional esophageal tumor ablation by simultaneous functioning of multiple electrodes
Radiofrequency ablation is a widely accepted minimal-invasive and effective local treatment for tumors. However, its current application in esophageal cancer treatment is limited to targeting thin and superficial lesions, such as Barrett's Esophagus. This study proposes an optimization method u...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2024-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radiofrequency ablation is a widely accepted minimal-invasive and effective local treatment for tumors. However, its current application in esophageal cancer treatment is limited to targeting thin and superficial lesions, such as Barrett's Esophagus. This study proposes an optimization method using multiple electrodes simultaneously to regulate the temperature field and achieve conformal ablation of tumors. A particle swarm optimization algorithm, coupled with a three-dimensional thermal ablation model, was developed to optimize the status of the functioning electrodes, the optimal voltage (V
), and treatment duration (t
) for targeted esophageal tumors. This approach takes into account both the electrical and thermal interactions of the electrodes. The results indicate that for esophageal cancers at various stages, with thickness (c) ranging from 4.5 mm to 10.0 mm, major axis (a) ranging from 7.3 mm to 27.3 mm, and minor axis (b) equaling 7.3 mm or 27.3 mm, as well as non-symmetrical geometries, complete tumor coverage (over 99.5%) close to conformal can be achieved. This method illustrates possible precise conformal ablation of esophageal cancers and it may also be used for conformal treatments of other intraluminal lesions. |
---|---|
ISSN: | 0140-0118 1741-0444 1741-0444 |
DOI: | 10.1007/s11517-024-03230-9 |